Development of a Launch Vehicle Control Algorithm at the Initial Flight Part in Case of one of the Engines

Авторы: Trifonov M.V., Altshuler A.Sh., Bobronnikov V.T. Опубликовано: 17.02.2019
Опубликовано в выпуске: #1(124)/2019  

DOI: 10.18698/0236-3941-2019-1-16-29

Раздел: Авиационная и ракетно-космическая техника | Рубрика: Динамика, баллистика, управление движением летательных аппаратов  
Ключевые слова: launch vehicle, launch complex safety, engine failure, emergency displacement, optimal regulator, quadratic criterion

The object of study is the control system of the launch vehicle (LV) at the initial phase of flight when an emergency situation occurs due to failure of one jet engine. It is assumed that when the situation occurs, the LV has to be "allocated" from the launch pad in a horizontal direction along a certain trajectory to the pre-selected area, avoiding a collision with the of great importance constructions of the launch complex, to perform further procedures for the liquidation of the LV. The aim of the study is to develop an optimal regulator of the LV control system, providing the implementation of an emergency flight of the LV. For the formation regulator this paper proposes a modified version of the Letov's method of analytical design of regulators (ACOR) problem solution. The peculiarity of the formulation of the problem as the ACOR problem is the dependence of the system outputs from the input control variables. The efficiency of the control is evaluated using the integral-terminal quadratic criterion. The motion of the LV at the considered flight phase is described by simplified linearized equations. The performances of the proposed optimal regulator is confirmed by compareson of simulation results obtained with the simplified and the detailed spatial models of the LV controllable motion


[1] Zhang L., Wei Ch., Jing L., et al. Heavy lift LV technology of adaptive augmented fault-tolerant control. IEEE CGNCC, 2016, pp. 1587–1593. DOI: 10.1109/CGNCC.2016.7829027

[2] Boskovic J.D., Jackson J., Nguyen N., et al. Multiple model-based adaptive fault-tolerant control of delta clipper experimental (DC-X) planetary lander. Proc. AIAA Guidance, Navigation & Control Conf. Exhibit, 2008, pp. 18–21. DOI: 10.2514/6.2008-7290

[3] Wall J.H., Orr J.S., VanZwieten T.S. Space launch system implementation of adaptive augmenting control. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140008748.pdf (accessed: 25.09.2018).

[4] Marzat J., Piet-Lahanier H., Damongeot F., et al. Model-based fault diagnosis for aerospace systems: a survey. Proc. Inst. Mech. Eng. G. J. Aerosp. Eng., 2012, vol. 226, no. 10, pp. 1329–1360. DOI: 10.1177/0954410011421717

[5] Castaldi P., Mimmo N., Simani S. Differential geometry based active fault-tolerant control for aircraft. Control Eng. Pract., 2014, vol. 32, pp. 227–235. DOI: 10.1016/j.conengprac.2013.12.011

[6] Lunze J., Richter J.H. Reconfigurable fault-tolerant control: a tutorial introduction. Eur. J. Control, 2008, vol. 14, no. 5, pp. 359–386. DOI: 10.3166/ejc.14.359-386

[7] Ducard G.J.J. Fault-tolerant flight control and guidance systems. Springer, 2009.

[8] Boldyrev S.V., Ovchinnikov A.G., Merkulova E.V. Solid propellant attitude control motor using in prospective manned spacecraft emergency rescue system. Trudy MAI, 2010, no. 45 (in Russ.).

[9] Letov A.M. Analytical design of controllers. I. Avtomatika i telemekhanika, 1960, vol. 21, no. 4, pp. 436–441 (in Russ.).

[10] Altshuler A.Sh., Bobronnikov V.T., Trifonov M.V. Development of launch vehicle control algorithm for the initial part of the trajectory using the ACOR method. Sibirskiy zhurnal nauki i tekhnologiy [Siberian Journal of Science and Technology], 2017, vol. 18, no. 2, pp. 314–322 (in Russ.).

[11] Lebedev A.A., Chernobrovkin L.S. Dinamika poleta bespilotnykh LA [Flight dynamics of unmanned aircraft]. Moscow, Mashinostroenie Publ., 1973.

[12] Athans M., Falb P. Optimal control: an introduction to the theory and its applications. Dover Publications, 2013.

[13] Afanasyev V.N. Teoriya optimalnogo upravleniya nepreryvnymi dinamicheskimi sistemami [Optimum control theory of continuous dynamic systems]. Moscow, MSU Publ., 2011.

[14] Merriam C.W. Optimization theory and the design of feedback control systems. McGraw Hill, 1964.

[15] Bobronnikov V.T., Krasilshchikov M.N., Kozorez D.A., et al. Statisticheskaya dinamika i optimizatsiya upravleniya letatelnykh apparatov [Aircraft statistical dynamics and control optimization]. Moscow, Alyans Publ., 2013.

[16] Bobronnikov V.T., Trifonov M.V. Technique of the statistical analysis of 1st stage LV motion taking into account random wind loads. Vestnik MAI [Aerospace MAI Journal], 2014, no. 1, pp. 33–42 (in Russ.).