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The paper considers the simplified one-dimensional mathematical models of
the processes, which describe both formation and propagation of shock waves,
rarefaction waves, and contact discontinuities in shock tubes. These models are based
on the quasi-one-dimensional equations of radiation gas dynamics. Experimental and
theoretical studies of both the formation and propagation of shock waves, rarefaction
waves and contact discontinuities using shock tubes have always been of significant
interest and they are currently being developed. It results from the fact that the shock
tubes are the most convenient tool of laboratory research in such contemporary fields
of modern science and technology as aerophysics and chemical kinetics, gas dynamics
and molecular physics. The flows of a multicomponent gas proves to be important
for many modern technological and power facilities as well as in hypersonic aircraft.
The multicomponent gas undergoes chemical conversions, oscillatory, and electron
excitation. A relatively simple instrument for creating non-equilibrium processes in
the gases is a shock wave propagating in a tube of a circular or rectangular cross-
section. This cross-section geometry allows simplifying the gas-dynamic flow pattern
in the working section.

Keywords: shock tube, gas dynamics equations, nonlinear quasimonotonous compact
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The problem statement. The aim of the paper is to examine the
processes of formation and propagation of shock waves (SW), rarefaction
waves and contact discontinuities in shock tubes using simplified one-
dimensional mathematical models.

One of the important tasks is to develop numerical methods and a
computational model code to describe unsteady one-dimensional radiation-
magnetogasodynamic processes in different types of shock tubes.

Description of processes occurring in shock tubes. The shock tubes
that generate shock waves have the following principle of operation (Fig. 1):
the shock wave is generated in the tube containing a test (driven) gas when
a “piston” of some kind is moving at a hypersonic speed. The shock tube, in
which a compressed air is used for generating shock waves, operates in the
most effective way when the ratio of the velocity of a sound in the working
gas (CR — driver gas) to the velocity of sound in the test gas (CSt — driven
gas) is sufficiently high (CR/CSt � 1). The heating of the driver gas in
a shock tube with an electric discharge, solid or gaseous substances may
be accompanied by a remarkable increase of the ratio mentioned above.
This is related to the fact that the gas temperature can increase from 2 кK
(without gas heating) up to 20 кK (with gas heating), which results in the
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Fig. 1. Diagram of interaction processes of shock waves, rarefaction waves and
contact discontinuities in the one-diaphragm shock tube after the rupture of the
diaphragm:
SW — shock wave front; CBF — contact boundary front; RWA — rarefaction wave area;
RSW — reflected shock wave front

significant (in this case about three times higher) increase of the sound
velocity in the driver gas (CR) and the proportional increase of the ratio
CR/CSt.

In the shock tubes, the shock wave front surface that is generated in the
test (driven) gas is close to plane and the gas flow in the working path of the
shock tube can be considered one-dimensional in a first approximation. In
the simpliest shock tube, the system of waves mentioned above is generated
after the rupture of the diaphragm (made of metal foil or lavsan film)
separating the low pressure chamber containing the low pressure test gas
(about 0.1. . .0.01 atm), from the high pressure chamber containing the
compressed gas (with pressure from several to hundreds atmospheres).

One of the important tasks in the theory of the shock tube is to establish
mathematical relationships between physical values, which define the state
of gas in a shock tube at the initial time, and the parameters of the system
of mentioned waves at any optional time.

These relationships can be found using methods of mathematical
modeling, which (in case of using high-accuracy computational methods)
reveal the detailed structure of the gas flow that undergoes physical-
chemical transformations, if strong and weak interacting discontinuities
are present in the flow area.

However, despite the development of multidimensional computational
techniques, one-dimensional mathematical models retain their practical
value, in particular, they allow verifying the models describing non-
equilibrium chemical transformations by the comparison of numerical and
experimental results.

The one-dimensional mathematical model of a gas flow in the path of
the shock tube can be developed if a number of simplifying assumptions is
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introduced. This elementary theory of the shock tube can be described by
a simplified scheme of the physical processes (the assumptions are listed
below). This simplified physical picture of the thermophysical processes in
a shock tube is as follows:

— after the forced rupture of the diaphragm (using a special technical
device), the driver gas in the high pressure chamber expands (compressing
the test gas) into the low pressure chamber filled with the test (driven) gas
under low pressure.

— in the low pressure chamber, a generated shock wave is propagating
in the test gas, and in the high pressure chamber a rarefaction wave is
propagating in the expanding driver gas;

— after the shock wave has reached the end of the pipe, it is reflected
and comes back towards the driver gas;

— then this reflected shock wave is interacting with the contact
discontinuity that separates the driver gas and the test gas, which results in
shock wave partial reflection (in the form of a shock wave or a rarefaction
wave (the criterion identifying these two cases is given below) and partial
refraction and moving (in the form of a shock wave) into the compressed
layer of the driver gas.

Here the following should be noted:
• if the shock wave interacting with the contact discontinuity escapes

from a denser medium into the less dense one, it is reflected from the
contact discontinuity in the form of a rarefaction waves fan;
• if the shock wave escapes from a less dense medium into the denser

one, it is reflected in the form of a shock wave.
The course of flow in the aerodynamic shock tube can be conveniently

represented in the form of the so-called x−t-diagram (Fig. 1). In x−t-
diagram, area 1 corresponds to the unperturbed initial state of the test
(driven or accelerated) gas, area 2 corresponds to the gas compressed in
the shock wave, areas 3 and 4 are the areas of gas “piston” and unperturbed
initial state of the gas in the high presure chamber before the rarefaction
wave arrival.

The surface denoted by К and separating (between areas 2 and 3) the
test (driven or accelerated) gas and the driver (accelerating) gas is referred
to as a contact surface (CS) or interface. The gas pressures and the flow
velocities on either side of the CS are equal (p2 = p3, u2 = u3). In the
subsequent instant of time, the shock wave and the rarefaction wave are
reflected from the end walls of the shock tube and begin to interact with
each other.

Experimental and theoretical research into generation and propagation
of the shock waves, rarefaction waves and contact discontinuities in
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the shock tube shows that there are deviations from an idealized one-
dimensional gas flow. For example, in most studied cases, the speed of
the shock wave and the contact surface speed are practically equal. This
similarity of the speed values of the CS and the shock wave results from
the CS acceleration, which, in its turn, is associated with the formation of
a boundary layer (which decelerates the shock wave) on the walls of the
aerodynamic shock tubes.

This effect can be explained as follows: the speed of the shock wave
front appears to be lower and the CS speed to be higher than the one-
dimensional theory predicts, which in its turn, is connected with the fact
that the gas piston (the CS plays its role) pushing the shock wave is not
completely impenetrable: the mass flux discharging into the front expands
from the shock-compressed area into the wall boundary layer, and thus the
mass concentrated between the shock wave front and the contact surface
remains constant.

This effect is the most appreciable when condition
L

R
� 1 is satisfied

(where L,R are the shock tube length and the radius), as well as when
the initial pressure of the test (driven or accelerated) gas decreases [1]. In
this case, the dynamic boundary layer “displaces” most effectively the gas
flow moving along the tube axis from the area which is adjacent to the
tube wall. This effect of flow displacement can be taken into account (in
a first approximation) by the use of boundary layer approximate equations
and gas dynamics quasi-one-dimensional equations.

An important factor, which misrepresent the one-dimensional gas flow
in a shock tube, is the duration of the diaphragm rupture (the time of
the diaphragm opening that depends on the material of the diaphragm
and the pressure value in the high-pressure chamber); it ranges from 100 to
1000 μs. The gas flow pattern after the rupture of the diaphragm central part
corresponds to the discharge of the pulse gas jet into the low pressure area.
The disturbances (of the shock wave or of the compression wave) caused
by the expanding jet in the test (driven or accelerated) gas, are reflected
from the walls of the shock tube and create spatial stream uniformities in
the flow structure. These uniformities result in deviation from the idealized
one-dimensional gas flow pattern.

It is also important that the contact boundary surface (separating the
driver gas from the test gas) is unstable and in the course of time acquires
an irregular spatial (bell-shaped) shape. The gases remaining on different
sides of the contact boundary may mix, which results in the nonuniformity
(non-one-dimensionality) of a gas flow stream in the shock tube.

It should be noted that the proposed computing algorithms for the
numerical modeling of aerothermophysical characteristics of the shock
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tubes should be supported by the following: methodical calculations,
accuracy control, comparison of numerical results with analytical solutions
and published designed and experimental results.

One-dimensional numerical method of the medium parameters
computing in the working section of a shock tube. Despite the one-
dimensional nature of the task relating to the multiple pass calculation,
reflection (from end faces of the shock tube) and interaction of previously
described system of waves, it steps up the demands for the numerical
method used in addressing it. First of all the design model must have the
improved dispersion and dissipation properties; it must be cost-effective,
algorithmically simple, and monotonous; it must approximate smooth
solutions with the highest order of accuracy.

These requirements can be satisfied by using a numerical solution
method for the quasi-one-dimensional synthermal one-fluid equations of
gas dynamics, which is based on the subincremental method. In this case
it consists of two steps [2]. The systems of equations mentioned above
can be solved using a version of the nonlinear quasimonotonous compact
difference scheme of the higher order of accuracy, developed by the authors.
Let us describe the ways to find the numerical solution of these fractional
steps.

The first fractional step involves gas-dynamic processes (the hyperbolic
part of the equations set in question agrees with these processes) that occur
in the shock tube after the rupture of the diaphragm, which separates the
driver gas from the test (driven) gas; the second fractional step involves
the quasi-one-dimensional geometry of the facility.

Mathematical formulation of the first fractional step and the solution to
the hyperbolic part of the equations set are based on the divergence form
and can be formulated by the following:

∂~U

∂t
+
∂F
(
~U
)

∂ξ
= ~F2, Fρ = −ρv

d lnF

dz
;

Fρv = −ρv
2d lnF

dz
, FE = − (ρEv + vP )

d lnF

dz
;

or

∂~U

∂t
= L (U) , L = −

∂F
(
~U
)

∂ξ
+ ~F2;

here the parameter ξ can take one of the values from the value set (r, z),
the solution vector is ~U = (ρ, ρuξ, ρE)

T, the flow variable vector can

be written as F
(
~U
)
=
(
ρuξ, ρu

2
ξ + P, ρEuξ + Puξ

)T
, and the right part

vector is presented as ~F2 = (Fρ, Fρu, FE)
T.
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It should be noted that the differential equations sets mentioned above
and related to the time variable t, are the sets of conventional differential
equiations of the first order, which can be solved using a vector version of
the Runge-Kutta multistep method (in the present paper, a four-step version
of the method [3] is used, which has the fourth order of approximation
relative to time t).

We bring the vector version of the Euler’s equations set to a normal

form with a time derivative defined in the left part
∂~Ui

∂t
:

∂~Ui

∂t
= L

(
~Ui

)
,

where L is the right part of the Euler’s equations set that does not contain
time derivatives. To a first approximation we use the solution obtained at
the previous time step. Then the four-step version of Runge-Kutta method
can be implemented in the form of the following sequence of steps:

~U
(1)
i =

[
~U
(0)
i +

Δt

4
L
(
~U
(0)
i

)]

,

~U
(2)
i =

[
~U
(0)
i +

Δt

3
L
(
~U
(1)
i

)]

,

~U
(3)
i =

[
~U
(0)
i +

Δt

2
L
(
~U
(2)
i

)]

,

~U
(4)
i =

[
~U
(0)
i +ΔtL

(
~U
(3)
i

)]
.

It is known that this way of searching for a solution ~Ui relative to t,
solves one of the problems of the Euler’s equations numerical solution ,
i.e. the need to ensure the positivity of the required functions (if at the time
instant tn the solution is positive, it remains positive at the time instant
tn+1 as well).

The rise of the approximation order relative to time variable t of the
Euler’s equations system numerical solution to the fourth order O (Δt4)
and higher is also possible if the sequence of meshes by time variable t and
extrapolation by limit offered by Richardson will be used. The Richardson
extrapolation has the following specific features:
• the possibility to use the simpliest approximations of differential

problems;
• the uniformity of algorithms implementation on the sequence of

meshes with different parameters of approximation;
• the simplicity of the algorithm realization in general.
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Let us take the solution to the problem in question obtained by
intergating (with the second order of approximation O (Δt2)) relative
to time t with increment Δt at the time instant t̂ = t + Δt, which we
denote as (ρ, u, v, P )|t+Δt, and also the solution (with the second order of
approximation O (Δt2)), denoted as (ρ, u, v, P )|t+Δt/2, obtained by using
two time increments (each increment is equal to Δt/2) before the time
instant t̂ = t+Δt.

Then the linear combination:

(ρ, u, v, P )|t̂t+Δt =
4

3
(ρ, u, v, P )|t̂t+Δt/2 −

1

3
(ρ, u, v, P )|t̂t+Δt

brings the exact solution nearer to the approximation of the fourth order
relative to time variable O (Δt4) [4].

To bring the exact solution nearer to the sixth or eighth order of
approximation relative to time variable, the formulas [5] should be used:

(ρ, u, v, P )|t̂t+Δt =
32

21
(ρ, u, v, P )|t̂t+Δt/4−

−
4

7
(ρ, u, v, P )|t̂t+Δt/2 +

1

21
(ρ, u, v, P )|t̂t+Δt ;

(ρ, u, v, P )|t̂t+Δt =
512

315
(ρ, u, v, P )|t̂t+Δt/8−

−
32

45
(ρ, u, v, P )|t̂t+Δt/4 +

4

45
(ρ, u, v, P )|t̂t+Δt/2 −

1

315
(ρ, u, v, P )|t̂t+Δt .

At the first fractional step, the following divergent form of Euler’s
equiations is used:

∂ρ

∂t
+
∂ρuξ

∂ξ
= Fρ,

∂ (ρuξ)

∂t
+
∂
(
ρu2ξ + P

)

∂ξ
= Fρu,

∂ (ρE)

∂t
+
∂ (ρEuξ + Puξ)

∂ξ
= FE,

∂ ~U

∂t
+
∂F
(
~U
)

∂ξ
= ~F2,

where uξ = (u, v), parameter ξ can take one of the set of values (r, z), the
solution vector is ~U = (ρ, ρuξ, ρE)

T, the vector of the flow variable will

be written as F
(
~U
)
=
(
ρuξ, ρu

2
ξ + P, ρEuξ + Puξ

)T
, and the right part

vector will be given as ~F2 = (Fρ, Fρu, FE)
T. Here (for the time fractional

step t ∈ [t, t+Δt/2]), the non-linear quasi-monotonous conpact difference
scheme of the higher order of accuracy is used, which in the space-smooth
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part of the numerical solution permits to acheve the seventh order of
accuracy:

∂~Ui

∂t
+
F
(
~Ui+1/2

)
− F

(
~Ui−1/2

)

Δξ
= ~F2.

Gas-dynamic parameters Un+1i , Uni are related to the centers of design
meshes, while the flows F ni±1/2, G

n
i are to be determined on the surface

of these meshes. To rise the order of the approximation of the difference
scheme, one should retrieve the gas-dynamics parameters Y R,Li±1/2, Y

R,L
i on

the right (index R) and on the left (index L) from the boundaries of
the design meshes. Then any function being retrieved Y (x) , [x = {ξ}],

ξ ∈ [−
Δξ
2
,
Δξ
2
], can be represented by piecewise-polynomial distributions:

Y (ξ) = Yi +

{(
∂Y

∂ξ

)

i

[ξ − ξi] +
1

2!

(
∂2Y

∂ξ2

)

i

[ξ − ξi]
2−

−
2

3!

(
∂2Y

∂ξ2

)

i

[
Δξ
2

]3
+
1

3!

(
∂3Y

∂ξ3

)

i

[ξ − ξi]
3 +
1

4!

(
∂4Y

∂ξ4

)

i

[ξ − ξi]
4−

−
2

5!

(
∂4Y

∂ξ4

)

i

[
Δξ
2

]5
+
1

5!

(
∂5Y

∂ξ5

)

i

[ξ − ξi]
5+

+
1

6!

(
∂6Y

∂ξ6

)

i

[ξ − ξi]
6 −
2

7!

(
∂4Y

∂ξ4

)

i

[
Δξ
2

]7}

,

where Y Ri+1/2 = Y

(

ξ =
Δξ
2

)

, Y Li−1/2 = Y

(

ξ = −
Δξ
2

)

, etc. Note, that

the formula data satisfy the balance relations: Yi =
1

Δξ

ξi+1/2∫

ξi−1/2

(ξ)dξ.

These piecewise-polynomial distributions should be limited (to bring
them to the monotonous form) by a function-limiter ϕ (Y ) [6]:

ϕ (Yi)=min

(

1,
|Yi −max (Yk)|∣

∣Yi −max
(
Yk−1/2, Yk+1/2

)∣∣ ,
|Yi −min (Yk)|∣

∣Yi −min
(
Yk−1/2, Yk+1/2

)∣∣

)

,

where k = i− 2, i− 1, i+ 1, i+ 2; i.e.,

Y (ξ) = Yi + ϕ (Yi)

{(
∂Y

∂ξ

)

i

[ξ − ξi] +

+
1

2!

(
∂2Y

∂ξ2

)

i

[ξ − ξi]
2 −
2

3!

(
∂2Y

∂ξ2

)

i

[
Δξ
2

]3
+

+
1

3!

(
∂3Y

∂ξ3

)

i

[ξ − ξi]
3 +
1

4!

(
∂4Y

∂ξ4

)

i

[ξ − ξi]
4 −
2

5!

(
∂4Y

∂ξ4

)

i

[
Δξ
2

]5
+

+
1

5!

(
∂5Y

∂ξ5

)

i

[ξ − ξi]
5 +
1

6!

(
∂6Y

∂ξ6

)

i

[ξ − ξi]
6 −
2

7!

(
∂4Y

∂ξ4

)

i

[
Δξ
2

]7}

.
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The space variables
(∂Y
∂ξ

)

i,j
included in piecewise-polynomial distribu-

tions Y (ξ) are computed as follows.
Firstly, for the discrete function Yi we determine the approximate value

Fi of the first partial derivative related to the space variable ξ with the
eighth order of approximation.

There to, in each mesh with number i for each value to be retrieved
Yi,j the index of non-monotony Ind(Y ) is to be computed:

Ind (Y )i=

1

12
|−Yi+2,j + 16Yi+1,j − 30Yi,j + 16Yi−1,j − Yi−2,j|

(
1

2

∣
∣
∣−Yi+2,j+4Yi+1,j−3Yi,j

∣
∣
∣+
1

2

∣
∣
∣3Yi,j − 4Yi−1,j + Yi−2,j

∣
∣
∣+ θ

) ,

where θ is a small parameter.
Then we find the first derivative f by variable ξ according to the usual

approximation formula of the second order of approximation and fulfil its
“monotonous limitation” on the mesh:

Ind (Y )i = 1 ∙ Ind (Y )i + 2 ∙ [1− Ind (Y )i] ;

fi =
Yi+1 − Yi−1
2Δ

,

f̃i = sign(Yi+1 − Yi−1)min
(
Ind (Y )i+1 |fi+1| , |fi| , Ind (Y )i−1 |fi−1|

)
,

where Δ is a step of the space mesh in direction ξ. Then the approximate
“monotonized” value of F̃i of the first partial derivative by the space

variables ξ with the approximation error on the level of Fi =
∂

∂ξ
+
Δ6

2100
+

+O (Δ8) can be obtained by the formula (i.e., by the solution of the system
of equations with the tridiagonal marix):

Qi =

(

E +
Δ2
30

)

f̃i, F̃i =

{(

E +
Δ2
6

)−1
Qi

}

i

;

Fi = sign(Yi+1 − Yi−1)min
(∣∣
∣F̃i+1

∣
∣
∣ ,
∣
∣
∣F̃i
∣
∣
∣ ,
∣
∣
∣F̃i−1

∣
∣
∣
)
;

Fi = Fi + sign(Yi+1 − Yi−1) ∙ [1− Ind (Y )i] ∙
∣
∣
∣F̃i − Fi

∣
∣
∣ ,

where Δ0fi = fi+1 − fi−1, Δ2fi = fi+1 − 2fi + fi−1, E is a unit operator.
Note, that the given formula is the symmetrical finite difference of the sixth
order of approximation [7]. This form of computing of the first derivative
Fi is used to form the edge conditions while obtaining the approximate
“monotonized” value F̃i of the first partial derivative by the space variables
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ξ with the approximation error on the level Fi =
∂

∂ξ
+
Δ8

44100
+ O (Δ10).

In this case the computation should be done as follows (on the basis of of
the equation system solution with pentadiagonal matrix [7]:

Qi =

(

E +
5Δ2
42

)

f̃i, F̃i =

{(

E +
2Δ2
7
+
Δ22
70

)−1
Qi

}

i

,

Fi = sign(Yi+1 − Yi−1)min
(∣∣
∣F̃i+1

∣
∣
∣ ,
∣
∣
∣F̃i
∣
∣
∣ ,
∣
∣
∣F̃i−1

∣
∣
∣
)
,

Fi = Fi + sign(Yi+1 − Yi−1) ∙ [1− Ind (Y )i] ∙
∣
∣
∣F̃i − Fi

∣
∣
∣ .

In piecewise-polynomial distributions Y (ξ) there are space derivatives

of the second order

(
∂2Y

∂ξ2

)

i

= si, which we further conventionally denote

by si, and compute with the eighth order of accuracy [5]:

9

38
(si+1 + si−1) + si = −

751

342Δ2
Yi +

147

152Δ2
(Yi+1 + Yi−1)+

+
51

380Δ2
(Yi+2 + Yi−2)−

23

6840Δ2
(Yi+3 + Yi−3) .

The space derivatives of the fourth

(
∂4Y

∂ξ4

)

i

= S4i and sixth
(
∂6Y

∂ξ6

)

i,j

= S6i orders can be obtained from the relations (i.e., by solving

the equations systems with the tridiagonal matrix) [7]:

Qi =

(
Δ2
6

)

f̃i, S̃
4
i =

{[

E −

(

E +
Δ2
6

)−1]

Q

}

i

;

S4i = Δ
4

(
∂4Y

∂ξ4

)

i

−
Δ8

720
+O

(
Δ10
)
;

Qi =

(
Δ2
12

)

S̃4i , S̃
6
i =

{[

E −

(

E +
Δ2
12

)−1]

Q

}

i

;

Si = Δ
6

(
∂6Y

∂ξ6

)

i

−
Δ10

180
+O

(
Δ12
)
.

The other derivatives included in the piecewise-polynomial distributions

are determined by using variables

(
∂Y

∂ξ

)

i

and

(
∂2Y

∂ξ2

)

i

.
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When the solution, which describes the displaceable part of the equation

(i.e.
∂Y

∂t
+ V

∂Y

∂ξ
= 0), is obtained, it is possible to approximate the

“retrievable” distribution using the distribution Y (ξ, η). Then it is possible
to determine the average value Ỹ of function Y (ξ) in different intervals:
for the interval

[
ξi+1/2 − |V | t, ξi+1/2

]
, if V > 0:

Ỹ Li+1/2 (|V | t) =

(
1

Ψ

) ξi+1/2∫

ξi+1/2−Ψ

Y (ξ) dξ = Yi−1,j+

+ ϕ (Yi−1)





−
F2,i−1

(
ψ̃
)

2!

[
Δξ
2

]2(
∂Y

∂ξ

)

i−1

−

−
F3,i−1

(
ψ̃
)

3!

[
Δξ
2

]3(
∂2Y

∂ξ2

)

i−1

−
2

3!

(
∂2Y

∂ξ2

)

i−1

[
Δξ
2

]3
−

−
F4,i−1

(
ψ̃
)

4!

[
Δξ
2

]4(
∂3Y

∂ξ3

)

i−1

−
F5,i−1

(
ψ̃
)

5!

[
Δξ
2

]5(
∂4Y

∂ξ4

)

i−1,j

−

−
2

5!

(
∂4Y

∂ξ4

)

i−1

[
Δξ
2

]5
−
F6,i−1

(
ψ̃
)

6!

[
Δξ
2

]6(
∂5Y

∂ξ5

)

i−1

−

−
F7,i−1

(
ψ̃
)

7!

[
Δξ
2

]7(
∂6Y

∂ξ6

)

i−1

−
2

7!

(
∂6Y

∂ξ6

)

i−1

[
Δξ
2

]7




;

for the interval
[
ξi+1/2, ξi+1/2 + |V | t

]
, if V < 0:

Ỹ Ri+1/2 (|V | t) =

(
1

Ψ

) ξi+1/2+Ψ∫

ξi+1/2

Y (ξ) dξ = Yi+

+ ϕ (Yi)






F2,i

(
ψ̃
)

2!

[

−
Δξ
2

]2(
∂Y

∂ξ

)

i

+

+
F3,i

(
ψ̃
)

3!

[

−
Δξ
2

]3(
∂2Y

∂ξ2

)

i

−
2

3!

(
∂2Y

∂ξ2

)

i

[
Δξ
2

]3
+

+
F4,i

(
ψ̃
)

4!

[

−
Δξ
2

]4(
∂3Y

∂ξ3

)

i

+
F5,i

(
ψ̃
)

5!

[

−
Δξ
2

]5(
∂4Y

∂ξ4

)

i,j

−
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−
2

5!

(
∂4Y

∂ξ4

)

i

[
Δξ
2

]5
+
F6,i

(
ψ̃
)

6!

[

−
Δξ
2

]6(
∂5Y

∂ξ5

)

i

−

+
F7,i

(
ψ̃
)

7!

[

−
Δξ
2

]7(
∂6Y

∂ξ6

)

i

−
2

7!

(
∂6Y

∂ξ6

)

i

[
Δξ
2

]7




,

where ψ = |V | t, ψ̃ = 2 |V | t/Δξ = 2ψ/Δξ).
Here, the following functions are introduced (symbol Ψ̃m, used in the

following formulas, means exponentiation of the value Ψ̃ to the m-th
power):

F2

(
ψ̃
)
= −2Ψ̃0 + Ψ̃1;

F3

(
ψ̃
)
= −3Ψ̃0 + 3Ψ̃1 − Ψ̃2;

F4

(
ψ̃
)
= −4Ψ̃0 + 6Ψ̃1 − 4Ψ̃2 + Ψ̃3;

F5

(
ψ̃
)
= −5Ψ̃0 + 10Ψ̃1 − 10Ψ̃2 + 5Ψ̃3 − Ψ̃4;

F6

(
ψ̃
)
= −6Ψ̃0 + 15Ψ̃1 − 20Ψ̃2 + 15Ψ̃3 − 6Ψ̃4 + Ψ̃5;

F7

(
ψ̃
)
= −7Ψ̃0 + 21Ψ̃1 − 35Ψ̃2 + 35Ψ̃3 − 21Ψ̃4 + 7Ψ̃5 − Ψ̃6.

When the solution describing the displaceable part of the equiation

(i.e.
∂c

∂t
+ V

∂c

∂x
= 0) is obtained, it is also possible to retrive the

distribution by the piecewise-polynomial distributions Y (x) , [x = {ξ}],

ξ ∈

[

−
Δξ
2
,
Δξ
2

]

, approximate by parabola q (x)=qLi +ξ (Δqi + q
6
i (1− ξ)),

where ξ =
(
x− xi−1/2

)
h−1,Δqi = qRi −q

L
i , q6i = 6

(
qi − (1/2)

(
qLi + q

R
i

))
,

qLi = Ỹ
L
i+1/2 (|V | t), q

R
i = Ỹ

R
i+1/2 (|V | t).

Then, the average value q̃ of the function q (x) can be found in separate
intervals:
• for interval

[
xi+1/2 − |V | t, xi+1/2

]
, if V > 0:

q̃Li+1/2 (y) = q
R
i − (1/2) yh

−1
(
Δqi − q

6
i

(
1− (2/3) yh−1

))
, y = V t;

• for interval
[
xi+1/2, xi+1/2 + |V | t

]
, if V < 0:

q̃Ri+1/2 (y)=q
L
i+1+(1/2) yh

−1
(
Δqi+1 + q

6
i+1

(
1− (2/3) yh−1

))
, y=−V t.

Note, that distribution q (x) is connected with the mentioned above

distribution Y by formulae: Δqi =

(
∂Y

∂ξ

)

i

, q6i = −
1

2

(
∂2Y

∂ξ2

)

i

.
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This results in the numerical method of solving the quasi-one-dimensi-
onal equations of gas-dynamics (physically specified well), underlaid by
the predictor-corrector method and a variant of the non-linear quasi-
monotonous compact difference scheme of the higher order of accuracy.
In this case, for the “predictor” stage, the system of Euler’s quasi-one-
dimensional equations is used in a general non-divergent characteristic
form, in which the unknown values are written relative to the Riemann
quasiinvariants. At the “corrector” stage, the divergent form of Euler’s
quasi-one-dimensional equations is used.

Time increment Δt, necessary for integrating the difference scheme
given above, is selected from the conditions of satisfying the Courant-
Friedrichs-Lewy stability criterion.

To approximate the second derivatives that are included into the
“viscous” part of the equations set of the dynamic and thermal boundary
layer, we used the finite-difference presentation of (μf)′z the variables on
the mesh introduced earlier by the following formulae [7]:

(μf)′z ≈

[
μi−1f

′
i−1 + 8

(
μi+1/2f

′
i+1/2 − μi−1/2f

′
i−1/2

)
− μi+1f ′i+1

]

6Δ
;

μi±1/2 =
[μi±2 + 9 (μi + μi±1)− μi∓1]

16
;

f ′i±1/2 ≈
[27 (∓fi ± fi±1)± (fi∓1 ∓ fi±2)]

12Δ
;

f ′i±1/2 ≈
[∓fi∓2 ± 6fi∓1 ∓ 18fi ± 10fi±1 ± 3fi±2]

12Δ
.

Mixed derivatives
∂

∂x

[

μ
∂f

∂y

]

i,j

have been approximated by the known

central differencies of the fourth order (or with the formulas given):

(μf)′z ≈
[fi−2 + 8 (fi+1 − fi−1)− fi+2]

12Δ
. The approximation effectiveness

of using “viscous” members of the boundary layer of high order accuracy
operators is particularly noticeable in the tasks relating to the computation
of the aerodynamic shock tubes. Let us use the displacement operator
Tmuj = uj+m = u (zj +mΔ) and the symbol of unit operator E = T0 to

determine the derivatives
∂v

∂r

∣
∣
∣
∣
r=R

,
∂ζ

∂r

∣
∣
∣
∣
r=R−δ

at the boundary of the design

area:

u′|r=R =
1

60Δ
[−12T−5 + 75T−4−

−200T−3 + 300T−2 − 300T−1 + 137E] +
Δ5

6
uVI;
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u′|r=R =
1

60Δ
[10T−6 − 72T−5+

+225T−4 − 400T−3 + 450T−2 − 360T−1 + 147E] +
Δ6

7
uVII;

u′|r=R−δ =
1

60Δ
[12T5−75T4+200T3−300T2+300T1 − 137E] +

Δ5

6
uVI;

u′|r=R−δ =
1

60Δ
[−10T6 + 72T5−

−225T4 + 400T3 − 450T2 + 360T1 − 147E] +
Δ6

7
uVII.

The main results of computation. The research computation was
performed using the computing methods developed for experimental
conditions (see Table 1) implemented in a one-diaphragm aerodynamic
shock tube (at the Institute for Problem Mechanics, RAS) [8, 9]. During
the experiments on the shock tube mentioned above, which were then
subjected to the numerical analysis, at the initial instant of time (i.e., before
the rupture of the diaphragm), the low pressure chamber (LP chamber)
was filled with air (test gas) at pressure pLPc [mbar] and temperature
T = 298.15 K, while the high pressure chamber (HP chamber) was
filled with a compressed air at pressure PHPc [mbar] and temperature
T = 298.15 K. The experimental facility at the Institute for Applied
Mechanics, RAS, looks like a tube of an uniform cross-section (internal
diameter D = 0.8 m; length of low pressure chamber LLPc = 7.35 m;
length of high pressure chamber LHPc = 1.97 m) and is designed for the
value range of Mach numbers SW M = 6 . . . 12].

No 1 2 3 4 5 6 7 8 9 10 11
pHPc, atm 10 10.2 22 19 13.2 19.5 19.5 20.5 21 36 34
pLPc, atm 0.3 15 6.6 100 2 0.7 5.6 100 100 1 1

In Fig. 2, the layout chart of the pressure gauge locations used for
obtaining the experimental time dependences of pressure P (t) (in different
spatial points) is shown.

In Fig. 3, the experimental (Experiment 4) time dependencies of
pressure P (t) for the second and third pressure gauges are shown (pressure
gauge 1 is at the right end of the shock tube plane (the Institute of Problem
Mechanics, RAS, see Fig. 2.)

From the graphs in Fig. 3, it follows that only gas-dynamic parameters
can be evaluated (by the times of the shock wave arrivals to the pressure
gauges) behind the front of the initial shock wave (gauge 2: z = 5.78 m,
t = 8.92 ms; gauge 3: z = 9.22 m, t = 14 ms): DSW ≈ 0.7 km/s,

u2 =
2

γ1 + 1
DSW ≈ 0.6 km/s, p2 =

2

γ1 + 1
ρ1D

2
SW ≈ 0.5 atm. From
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Fig. 2. The layout chart of pressure gauge locations in one-diaphragm shock tube (at
the Institute for Problem Mechanics, RAS)

Fig. 3. Experimental time dependencies for the second (a) and third (b) pressure
gauges (Experiment 4)

the graphic curve of pressure gauge 2 (z = 5.78 m), it follows that the
observed maximum of the amplitude corresponds not to the initial shock
wave arrival, i.e., not to the time t ≈ 9 ms, but to a later instant t ≈ 30 ms.

This phenomenon might be associated with the fact that at the moment
of time t ≈ 30 ms, at the point where gauge 2 is installed (approximately
near the center of the computed area), the shock wave amplification after
its reflection from the end surfaces of the shock tube is significantly higher
that its attenuation during its interaction with rarefaction waves. These
graphic curves also indicate that the further (relative to time) gas wave
motion in a shock tube results in shock wave attenuation and the transition
of the flow into the acoustic wave movement.

Thus, it may be noted that the unsteady gas flowing in the aerodynamic
shock tube has a number of features which require a more detailed
numerical study. The analysis of the characteristics of the flow in the shock
tube of the Institute for Applied Mechanics, RAS, at the initial stage of
study is preferably to be carried out using an approximate one-dimensional
model, the elements of which are presented in this paper.
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While developing an approximate one-dimensional model, a scheme
of the computed area was used, as shown in Fig. 2. On the left side of
the computed area there is a shock tube end wall for which a boundary
condition was set, that of gas medium “non-leaking” through a solid
barrier. On the right side of the integration field, the boundary condition
of “non-leaking” was also stated. Thus, during the computation, it was
approximately assumed that on the left side, the shock tube is limited
by a solid wall (actually in this shock tube (at the Institute of Applied
Mechanics, RAS, see Fig. 2), there is a Laval nozzle).

The resulting initial structure of the gas flow after the rupture of the
diaphragm is shown in Fig. 4 and described in the notes. This structure of
gas flow corresponds to the phase of wave system autonomic distribution
in the space and extends for a time interval 0 6 t 6 0.85 ms. As known
[10], the shock wave intensity is accepted to be characterized with a

dimensionless parameter called a shock wave amplitude: Z =
p2 − p1
ρ1c
2
1

.

The levels of temperature and pressure values behind the shock wave front
at this stage are specified by T ≈ 0.7 кK, p ≈ 0.7 atm. In the vicinity of
the computed area boundaries, the gas is not disturbed and corresponds to
the initial conditions (right boundary — T = 298.15 K, p = 19 atm; left
boundary — T = 298.15 K, p = 0.1 atm). The following flow structure is
observed for the time interval 0.85 6 t 6 10.3 ms and is up to the phase
of the initial interaction of shok waves and rarefaction waves with a solid
barrier.

The result of shock wave reflection from the solid barrier that is located
on the right of the area of integration is shown in Fig. 5. It is known that

Fig. 4. Spatial distribution of pressure (a) and temperature (b) at the moment
t = 3.4t = 3.4t = 3.4 ms after the rupture of the diaphragm (Experiment 4):
1 — unperturbed test (driven) gas; 2 — shock wave front; 3 — area of shock-compressed
test (driven) gas; 4 — contact boundary front; 5 — space occupied by the rarefaction wave
in the test (driven) gas; 6 — space corresponding to the initial state of the driver gas in
the high pressure chamber
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Fig. 5. Spatial distribution of pressure (a) and temperature (b) at the moment
t = 9.1t = 9.1t = 9.1 ms (Experiment 4):
1 — shock-compressed test (driven) gas behind the reflected shock wave; 2 — reflected
shock wave front; 3 — area of the initial shock-compressed test (driven) gas; 4 — contact
boundary front; 5 — space occupied by the rarefaction wave in driver gas

the most significant peculiarity of the interaction of a shock wave with
a solid barrier is the shock wave amplification after its reflection from
the barrier [10]. It is convenient to characterize the process of the shock

wave reflection by the relative amplification coefficient: K =
Δp3
Δp2

, where

Δp3 = p3 − p1 is the excessive pressure in the reflected shock wave,
Δp2 = p2 − p1 is the excessive pressure in the incident wave.

From graphic curves given in Fig. 3, it follows that the shock wave
collision with the solid barrier results in the appreciable amplification of
the reflected shock wave: the amplification coefficient K ≈ 6 (for air the
maximum value of amplification coefficient is K = 8). The amplitude
value of the reflected shock wave Z ≈ 24, the temperature and pressure
at the right computed boundary increase to T ≈ 1.2 кK, p ≈ 3.5 atm.
By this moment, the fan-shaped flow of rarefaction waves has already
reflected from the left computed boundary and moved more than half into
the computed zone. Along with it, the temperature and pressure at the left
boundary have dropped to T ≈ 0.2 кK, p ≈ 7 atm.

Then, mostly at the right computed boundary, we can observe the flow
structure (Fig. 6) corresponding to the phase of complex interaction of the
shock wave, contact discontinuity, and rarefaction wave, which expands

approximately for 10.3 6 t 6 10.3+
LHPc + LLPc

c1
≈ 35 ms. The reflected

shock wave interacts only with the contact discontinuity that moves towards
it at the initial stage of the phase of flowing in the shock tube in the vicinity
of the right computed boundary.

In this case there can be two options of the interaction: a) if the shock
wave interacting with the contact discontinuity expands from the denser
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Fig. 6. Spatial distribution of pressure (a) and temperature (b) at the moment
t = 3.4t = 3.4t = 3.4 ms (experiment 4)

medium into the less dense medium, then it will reflect from the contact
discontinuity in the form of a fan of rarefaction waves; b) if the case is
opposite – from the less dense medium into the denser one, - then the
reflection takes the form of a shock wave.

In the numerical computation done, the interaction type (а) has been
implemented, and the fan of rarefaction waves has been repeatedly reflected
from the shock tube wall and from the contact discontinuity. A bit later the
process of waves interaction is becoming more complicated, which results
from the influence of the reflected from the left boundary rarefaction wave.
Along with this, the temperature and pressure at the left boundary have
been equalized and reduced their values as compared to the previous phase
of flowing T ≈ 0.15 кK, p ≈ 1.5 atm.

The following flow structure (see Fig. 7) can be observed starting since
the moment of time 35 ms and it corresponds to the phase of the secondary
interaction of the shock wave reflected from the left computed boundary

Fig. 7. Spatial distribution of pressure (a), Mach number M (b) (dashed line),
temperature (solid line) at the moment t = 42t = 42t = 42 ms (Experiment 4)
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(solid barrier). The following curves show that the gas wave flow in the
shock tube results in a relatively weak shock wave attennuation. The values
of the reflected shock wave amplitude and the pressure in the vicinity of
the left boundary are on a relatively high leve lz ≈ 80, p ≈ 12 atm, but
the temperature has dropped to T ≈ 0.4 кK. By this moment of time, in
the most part of the computed zone, the pressure and temperature have
almost similar values T ≈ 0.4 кK, P ≈ 3.5 atm, but they are quite high in
comparison with the initial conditions in the low pressure chamber. It can
be explained by the active processes of relaxation occurring in the shock
tube. It is interesting that if the processes of equalization in the shock
tube had completely come to an end, then the values of termodynamic
parameters T ≈ 0.12 кK, p ≈ 1.63 atm would have been set.

It should be noted, that the proposed computational algorithm, which
is intended for numerical modeling of aerothermophysical characteristics
of the aerodynamic shock tubes, is to be compared with the published
computational and experimental results.

For this purpose, experimental and computational time dependences
obtained for pressure gauges 2 and 3 were compared (Fig. 8). From the
graphs of the experimental dependences (it 1, it 2) it follows that the
first period of pressure P (t) change (and for gauge 2 — both the first
and the second periods) differ noticeably from the following periods. This
difference might be caused by the “transition” processes (which can be
caused by the gas outflowing through the Laval nozzle and various factors
distorting the one-dimensional flow pattern in the shock tube) occurring

Fig. 8. Experimental (1 and 2) and computational (3 and 4) time dependences for
the second (1 and 4) and third (2 and 3) pressure gauges (Experiment 4) (dashed
line — computation; solid line — experiment)
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in the shock tube at the initial stage. The comparison of experimental and
computational physical dependences (see Fig 8) allows noting satisfactory
coincidence between them.

Conclusion. The numerical methods and the computation code for
non-stationary one-dimensional radiation magnetogasdynamic models are
developed, which are intended to describe the thermophysical processes in
various types of shock tubes. The numerical solution of the non-stationary
radiation magnetogasdynamic model described in this article is based
on the splitting method according to the physical processes and spatial
directions. The solution of the splitted equations is to be found using
the developed non-linear quasimonotonous compact difference scheme of
the higher order of accuracy, which allows achieving the seventh order of
accuracy in the spatial smooth part of the numerical solution. The proposed
mathematical apparatus can be used for solving more complicated Reynolds
equations. The solution to the formulated problem will enhance the further
experimental and theoretical research into the shock tubes.

The work has been fulfilled in the Laboratory for Radiation Gas
Dynamics at Ishlinskii Institute for Problems in Mechanics of the Russian
Academy of Science (RAS) within the programme of RAS Fundamental
Research.
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