ФУНДАМЕНТАЛЬНЫЕ ПРОБЛЕМЫ МАШИНОСТРОЕНИЯ

УДК 533.92 + 621.378

Ю. Ю. Протасов, О. В. Христофоров

ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ И МАСС-РАСХОДНЫХ ХАРАКТЕРИСТИК ИМПУЛЬСНЫХ ЛАЗЕРНЫХ МИКРОИНЖЕКТОРОВ ЭРОЗИОННОГО ТИПА

Приведены результаты экспериментального исследования и разработок импульсного лазерного микроинжектора эрозионного типа с двухкаскадным механизмом генерации и нагрева рабочего вещества. Осуществление в данной схеме инжектора (с помощью двух согласованных по спектрально-энергетическим и динамическим параметрам/характеристикам лазерных импульсов воздействия на твердотельную аблирующую мишень) последовательных стадий генерации (лазерной абляции) и радиационно-газодинамического нагрева рабочего вещества в камерах инжектора позволяет достигнуть высоких значений коэффициента монохроматичности потока, а также эффективности преобразования энергии лазерного излучения в кинетическую энергию с тонко дозируемым расходом массы.

Явление лазерной абляции (резонансной или термической) широко используется для генерации низкотемпературной плазмы различного химического и ионизационного состава в плазменной химии, пучковой технологии модификации поверхности макроструктур и др. [1, 2]. Импульсные лазерные микроинжекторы плазмы — это перспективный инструмент спектрохимического анализа, так как при генерации активных сред сложного (практически любого) химического и ионизационного составов они обеспечивают тонко регулируемую стехиометрию газово-плазменных потоков, свободных от примесей (< 3 % \dot{m}) в локальных реакционных объемах широкого диапазона параметров (концентраций нейтральных и заряженных частиц, температур и скоростей — $n_{e,a} \sim 10^{14} - 10^{19} \, {\rm см}^{-3}$, $T_{e,a} \sim 10^{-1} - 10 \, {\rm эB}$, $\tilde{v} \sim 10^4 - 5 \cdot 10^6 \, {\rm см/c}$ соответственно).

Достоинством лазерного способа генерации, нагрева и ускорения рабочего вещества в инжекторах эрозионного типа является возможность пространственного разделения направлений отбора высокоэнтальпийных газово-плазменных потоков и лазерного излучения при различных формах факельного, непрерывного оптического и лазерного разрядов в газовых и вакуумных условиях, управления гидродинамической плотностью мощности ($\sim \rho v^3$) при изменении спектральной

интенсивности лазерного излучения в зоне генерации активной среды и частотного (импульсно-периодического) режима работы генератора с необходимой дозировкой полного импульса потока [3].

Физико-технологические проблемы разработок параметрического ряда лазерных инжекторов эрозионного типа связаны с необходимостью построения спектрально-энергетического и размерного скэйлинга в условиях многофакторных опто-теплофизических, радиационногазодинамических и опто-механических процессов, сопровождающих воздействие когерентного излучения с параметрами импульса воздействия ($I_0 \sim 10^4 - 10^8 \, \text{Bt/cm}^2$, $\tau_{\rm B} \sim 10^{-8} - 10^{-3} \, \text{c}$) на конденсированное вещество аблирующей мишени. Основное принципиальное ограничение лазерных микроинжекторов эрозионного типа испарительных схем [4] при продвижении в новый микро-наноньютоновый диапазон массрасходных характеристик и импульсов потока связано с тем, что независимо от механизма генерации рабочего вещества (резонансная или термическая лазерная абляция, светоэрозия или пиролиз) существует (вследствие инерционности фазовых переходов) временная задержка

Рис. 1. Временная циклограмма рабочих процессов в двухкаскадном инжекторе эрозионного типа:

a — изменение плотности мощности излучения первого лазерного импульса в зоне облучения диэлектрической мишени; δ — изменение массового расхода рабочего вещества мишени в газовой фазе; e — изменение плотности мощности второго "греющего" лазерного импульса в зоне оптического пробоя; e — x - t-диаграмма газовоплазменного потока за срезом инжектора — $\Delta t_1 \sim (3-5) \cdot 10^{-6}$ с (рис. 1) относительно лазерного импульса поступления испаряемого вещества в оптический разряд инжектора. Отсутствие согласованного с динамикой лазерного импульса $I_0(t)$ выхода массы $\dot{m}(t)$ приводит к увеличению продольной дисперсии скоростей

и снижению коэффициента монохроматичности потока¹ $\varepsilon \sim \frac{\bar{v}^2}{\bar{v}^2}$, так как часть испаренного вещества m_2 не вовлекается в радиационногазодинамический лазерный цикл воздействия, продолжает поступать с тепловой скоростью и после прекращения лазерного импульса; это не позволяет обеспечить тонкую дозировку масс-расходных параметров инжектора и ограничивает диапазон среднемассовых скоростей и его частотные характеристики.

Экспериментальные условия. Новые возможности преодоления этих ограничений связаны с комбинированным (испарительным и детонационным) механизмом генерации и нагрева активной среды в одном рабочем цикле лазерного инжектора. В этой двухкаскадной схеме для стадии генерации рабочего вещества и стадии нагрева газовоплазменного потока во фронте лазерной детонационной волны (ЛДВ) используются два согласованных (по спектрально-энергетическим и динамическим параметрам) лазерных импульса (см. рис. 1). Далее описан разработанный двухкаскадный лазерный микроинжектор газовоплазменных потоков эрозионного типа. Теоретический анализ такого двухкаскадного механизма лазерного ускорения в инжекторах данного типа выполнен в работе [4].

Модуль лазерного инжектора (рис. 2) содержит три соосно расположенных в цилиндрическом молибденовом корпусе *1* узла: мишенной камеры I, радиационно-газодинамического нагрева рабочего вещества II и газодинамический узел III. В мишенной камере установлен юстируемый по оси инжектора цилиндрический стакан 2 с аблирующей профилированной полусферической (*a*) или конической (*б*) мишенью 3, выполненной из материалов полимерного ряда (С, О, Н, F, N) или/и легкоаблирующих металлов (CH₂O)_n, (CH₂)_n, (C₂F₄)_n, Bi, Al, Cd. Стакан 2 установлен в цилиндрической втулке 4 и имеет подвижку типа "винт–гайка" через шток 5, торцовую крышку 6 корпуса инжектора, и направляющую втулку 7. В мишенной камере I под углом $\alpha = 45^{\circ}$ к оси расположен цилиндрический патрубок 8 ввода лазерного излучения (первый импульс) с оптическим окном 9, соединенном с блоком

¹Потери массы m_2 примерно равны массе m_1 , эффективно участвующей в процессе радиационного нагрева среды, т.е. $m_1 \sim m_2$, причем при $v_2 \ll v_1$ коэффициент монохроматичности потока $\varepsilon \sim \frac{m_1}{m_1 + m_2}$ и имеет в этом случае физический смысл коэффициента использования рабочего вещества в лазерном инжекторе эрозионного типа.

Рис. 2. Принципиальная блок-схема двухкаскадного лазерного инжектора эрозионного типа

фокусирующей и транспортной оптики 10, основные размерные соотношения которого определяются оптимальной геометрией зоны облучения мишени. Цилиндрическая молибденовая камера радиационногазодинамического нагрева 11, последовательно соединенная разъемными фланцами 12 с газодинамическим насадком 13, содержит цилиндрический патрубок 14 ввода лазерного излучения (второго импульса) с оптическим окном 15 и блок фокусирующей оптики 16, соединенной с лазерным излучателем с модулированной добротностью. Для радиальной юстировки камер инжектора на патрубке установлены опорные полукольцевые втулки 17.

Облучаемые конденсированные мишени различной геометрии и химического состава (диэлектрики, металлы или их смеси) с развитой аблирующей поверхностью ($S_0 \sim 0,17-1,1 \,\mathrm{cm}^2$) устанавливаются в торце цилиндрической молибденовой мишенной камеры таким образом, чтобы плотность поглощаемой энергии излучения была максимальной. Сопряженные размеры камеры D, L, и L_2 равны 20, 50 и 70 мм соответственно. Характерные параметры лазерного излучения в цуге импульсов следующие: первый лазерный импульс, вводимый в мишенную камеру, — $\lambda_{\rm I} \sim 1,06$ мкм, $I_{01} \sim 10^5-10^8$ BT/см², $\tau_{u_1} \sim 4\cdot10^{-4}-3\cdot10^{-5}$ с; второй лазерный детонационный импульс, генерируемый с регулируемой временной задержкой $\Delta t_2 \sim 10^{-5}-5\cdot10^{-5}$ с в камере нагрева, — $\lambda_{\rm I} \sim 1,06$ мкм, $I_{02} \sim 10^7-10^9$ BT/см², $\tau_{u_2} \sim 0,7-1,2\cdot10^{-6}$ с.

Экспериментальные результаты. Экспериментальное исследование радиационно-газодинамических внутрикамерных процессов преобразования энергии лазерного излучения по трактам инжектора, динамических и масс-расходных характеристик плазменного потока на срезе проводилось с использованием диагностического комплекса импульсной голографической интерферометрии с визуализацией поля, СФР- и шлирен-фоторегистрации и спектрохронографии, описанного в работе [5].

Анализ полученных экспериментальных данных показывает, что оптимальным режимом генерации рабочего вещества в газовой фазе с управляемым массовым расходом ($\dot{m}(t) \sim 10^{-4} - 10^{-6}$ г/с) и высокими значениями параметра эффективности лазерной абляции является режим поддержания в мишенной камере инжектора лазерно-индуцированной волны развитого испарения.

Отсутствие на этой стадии оптического разряда Δt_2 (см. рис. 1) волны термической ионизации, сопровождаемой плазменной экранировкой лазерного излучения на облучаемой мишени, позволяет связать опто-теплофизические и критериальные параметры лучевого воздействия с регулировочными параметрами I_{01} , τ_{u_1} , $E_{u_1}/S_0...$ для осуществления контролируемой во времени лазерной абляции и управляемого расхода рабочего вещества мишеней сложного химического состава с изотропным начальным распределением плотности газа до начала оптического пробоя (т.е. генерации ЛДВ).

Прямые калориметрические измерения мощности и энергии лазерного излучения, поглощенной полимерной (CH₂O)_n мишенью с развитой поверхностью светоэрозии, выполненные с помощью металлического болометра с висмутовым термосопротивлением, установленным в мишени, позволили определить эффективный коэффициент теплопередачи $K_{\rm to} \sim 0.8$ в диапазоне плотностей мощности первого лазерного импульса $10^6 < I_{01} < 7 \cdot 10^7$ Вт/см², и достигнуть (в результате многопараметрической оптимизации условий облучения полимерных мишеней) значений коэффициента эффективности лазерной абляции $\eta_{\rm na} \sim 0.75 - 0.9$ (рис. 3).

Динамика стадии ударно-волнового нагрева плазменного потока в лазерном инжекторе определяется скоростными харатеристиками, формой и макроструктурой лазерной детонационной волны, генерируемой при низкопороговом ($I_{02}^{**} \sim 10^8 \,\mathrm{Bt/cm^2}$, $t_{\rm np} \sim 3 \cdot 10^{-7} \,\mathrm{c}$) оптическом пробое среды на переднем фронте второго лазерного импульса ($t_2 \sim 10^{-6} \,\mathrm{c}$). Эффективность нагрева, определяемая условием оптимального пространственно-временного сопряжения волны развитого испарения в мишенной камере инжектора и волны лазерной детонации

Рис. 3. Экспериментальные зависимости (от плотности мощности первого импульса лазерного излучения, $\lambda_{\rm H} \sim 1,06$ мкм; параметры второго детонационного лазерного импульса — $I_{0_2} \sim 2 \cdot 10^7$ Вт/см²; $\tau_{\rm H} \sim 1,2 \cdot 10^{-6}$ с): коэффициент монохроматичности потока ε на срезе двухкаскадного l и однокаска-

коэффициент монохроматичности потока ε на срезе двухкаскадного 1 и однокаскадного инжектора 2; среднемассовая скорость \tilde{v} потока на срезе 3; удельная массрасходная характеристика двухкаскадного инжектора 4 ((CH₂)_n-мишень, $L_1 = 50$ мм, $L_2 = 70$ мм, D = 20 мм)

в камере нагрева и ускорения II, существенно зависит от размерных соотношений D/L камер и профилей аблирующей мишени инжектора, спектрально-энергетических и динамических параметров лазерных импульсов в цуге. Изменяя длительность τ_{u_1} и форму (крутизну переднего и заднего фронтов) первого лазерного импульса и временную задержку (Δt_2) инициирования оптического пробоя и пространственную локализацию зоны генерации лазерной детонационной волны L_2 , ограниченные условиями достижения максимального расхода $\dot{m}(\Delta t_2)$ вещества, можно обеспечить условия вовлечения в цикл радиационногазодинамического нагрева более ~ 90 % всей поступившей в мишенную камеру парогазовой среды.

Экспериментально определенные значения среднемассовых скоростей \tilde{v} потока на срезе инжектора (рис. 4) и коэффициента монохроматичности потока ε (см. рис. 3) даже в неоптимальных пространственновременных условиях развития ЛДВ и размерных соотношений лабораторных моделей рабочих камер превышают достигнутые в эрозионных инжекторах однокаскадных схем с испарительным механизмом генерации на ~ 25 % и ~ 30 % соответственно.

Эффективность преобразования энергии лазерного излучения E_{π} в кинетическую энергию ударной волны (ЛДВ) характеризует удельный механический импульс $I_{\rm M}/E_{\pi}$ (как и симметрию газодинамического воздействия в камерах инжектора [6]). Задача оптимизации термоме-

Рис. 4. Зависимость удельного механического импульса отдачи в инжекторе с мишенной камерой различных геометрий от безразмерного динамического параметра R/R_3 (R — расстояние от центра оптического пробоя — генерации ударной волны — до наиболее удаленных от него участков поверхности мишени; R_3 — радиус сферически симметричной УВ):

1 — полусферическая мишень, геометрический параметр $\Delta/D=0,2;2$ — параболоид вращения, $\Delta/D=0,2;3$ — плоская мишень, с развитой поверхностью, $\Delta/D=0,15;4$ — плоская мишень, $\Delta/D=0,1;5$ — коническая мишень, $\Delta/D=0,15$

ханического воздействия лазерной детонационной волны на стенки профилированных камер решалась при экспериментальном определении удельного механического импульса отдачи для полусферических, конических и параболических мишеней (рис. 5) легкоаблирующих диэлектриков полимерного ряда $(CH_2O)_n$, $(CH_2)_n$, $(C_2F_4)_n$. Зона оптического пробоя в выбранном диапазоне регулировочных параметров лазерного инжектора была устойчиво локализована на оси мишенной камеры, что привело к возбуждению в газово-плазменной среде сферически симметричного течения газа (до начала взаимодействуя со стенками мишеней) и позволило представить результаты измерений удельного импульса отдачи ($I_{\rm M}/E_{\rm J}$) в соответствии с законами подобия для ударных волн [5, 7] в зависимости от безразмерного динамического параметра R/R_3 . Анализ экспериментальных результатов показывает, что для каждой геометрической конфигурации мишенной камеры эрозионного инжектора существует оптимальное (с точки зрения максимизации величины среднемассовой скорости ускоренного потока \tilde{v}) значение динамического параметра R/R_3 . На рис. 5 приведены зависимости удельного механического импульса от динамического параметра R/R_3 при различных значениях геометрического параметра Δ/D , полученные на профилированных мишенях. Из рис. 5 следует, что при относительном удалении зоны пробоя от поверхности мишени (с увеличением Δ/D) можно осуществить непрерывный переход от воздействия на мишень в режиме скользящей ударной волны ($\Delta/D \rightarrow 0$) к случаю сообщения поверхности мишени импульса при нормальном падении на нее газового потока ($\Delta/D > 1$).

Экспериментальное определение динамики теплового потока, поглощаемого мишенью q(t), описанное в работе [6], совместно с результатами измерения температуры поверхности и численного моделирования временного изменения толщины слоя рабочего вещества, уносимого с единицы поверхности аблирующей (металлической или полимерной) мишени с характерным инерционным временем (Δt_{μ}) — задержкой начала выхода массы относительно временной эпюры $I_0(t)$ лазерного импульса и для типичных значений пятна фокусировки на мишень (размер облучаемой поверхности $S_0 \approx \text{const}$) позволяют определить величину расхода вещества во времени процесса воздействия $m(t) = \xi(t)\rho F$. Эти данные приведены для рабочих веществ инжектора на рис. 6 и позволяют оценить не только размеры зон термического воздействия и разрушения мишени, но и баланс энергии в мишенной камере инжектора, а с учетом газодинамических явлений у поверхности мишени (импульс отдачи испаряющихся паров, градиенты ρv^3) оценить интегральную за импульс массу испаряемого вещества в конденсированной и газовой фазах.

скорость ударной волны *1* и контактной границы потока *2*; давление ударносжатого газа, определенное по скоростям УВ *3* и КГ *4*, продольная координата ударной волны *5* и контактной границы *6*

Рис. 6. Влияние газодинамических условий на массовый расход рабочих тел ИЛД:

свободная (CH₂O)_{*n*}-мишень *1*, *2*, *3*; плоская (CH₂)_{*n*}-мишень в радиально ограниченном канале *4*, *5*, *6*; E_{μ}^{*} — порог развитого испарения (без конденсированной фазы) Таким образом, осуществление с помощью двух согласованных по спектрально-энергетическим и динамическим параметрам лазерных импульсов последовательных стадий генерации (лазерной абляции) и радиационно-газодинамического нагрева рабочего вещества инжектора позволяет достигнуть высоких значений коэффициентов преобразования энергии лазерного излучения во внутреннюю энергию плазмы и монохроматичности плазменного потока на срезе инжектора, т.е. преодолеть принципиальные ограничения лазерных источников эрозионного типа с испарительным механизмом генерации газово-плазменных потоков.

СПИСОК ЛИТЕРАТУРЫ

- 1. Plasma Spectrochemistry, IX, ed. R.M.Barnes, Pergamon Press, N-Y, 1997.
- 2. Радиационная плазмодинамика. Т. 1. / Под ред. Ю.С. Протасова. М.: Энергоатомиздат, 1991. 860 с.
- Phipps C. R., Jr. Turner T. P., Harrison R. F., York G. W., Osbor ne W. Z., Anderson G. K., Haynes X. F., Steele H. S., Spicochi K. C. & King T. R. Impulse Coupling to Targets in Vacuum by KrF, HF and CO₂ Lasers. J. Appl. Phys., 64, 1083–1096 (1088).
- 4. Протасов Ю. Ю. Разработка и исследование параметрического ряда лазерных микроинжекторов плазмы сложного химического состава // Тез. докл. 3-го Международного симпозиума по теоретической и прикладной плазмохимии. Иваново, 2002. С. 469–471.
- 5. Протасов Ю. Ю. // Вестник МГТУ имени Н.Э. Баумана. Серия "Машиностроение". – 2002. – № 2. – С. 98–100.
- 6. P r o t a s o v Y u. Y u. About phase transitions stimulated by laser radiation / in "The Physics of Heat Transfer in Boiling and Condensation" ed A.I. Leontiev. M.: Nauka, 1997. PP. 504–511.
- Корышев О. В., Ноготков Д. О., Протасов Ю. Ю., Телех В. Д. Термодинамические, оптические и транспортные свойства рабочих веществ плазменных и фотонных энергетических установок. Т. 1 / Под ред. Ю.С. Протасова. – М.: Изд. МГТУ им. Н.Э. Баумана, 2000. – 640 с.

Статья поступила в редакцию

Юрий Юрьевич Протасов — д-р техн. наук, доцент кафедры "Газотурбинные и нетрадиционные установки" МГТУ им. Н.Э. Баумана. Автор более 100 научных работ в области фотонной энергетики.

Yu.Yu. Protasov — D.Sc. (Eng.), assoc. professor of "Gas-Turbine and Non-Traditional Facilities" department of the Bauman Moscow State Technical University. Author of over 100 publications in the field of photon power-engineering.

