JI Simei
(School of Electro-mechtronic Engineering (02),
P.O.Box 327, Beijing, 100081, P.R. China)

SOFTWARE ENGINEERING AND ITS
APPLICATION IN AEROSPACE INDUSTRY!

Based on a brief review to the history of Software Engineering (SE),
important conceptions and technical terms in this field are introduced,
including Life Cycle of SE, Process Model, Software Architecture, and
Design Method of different systems. Following a simple description of
its standardization course and famous commercial development tools,
the application status of SE in aerospace industry are analyzed, both
domestically and oversea. Finally, the expectations are expressed.

Great achievements have been made in Science, Technology as well
as in Sociology after the second world war, while the most significant
progresses came forth in Aerospace Industry and Information Technology.
As an essential requisite, computer has been widely used in our daily
life and almost all kinds of workplaces. Aerospace industry was once a
promotive factor to the development of computational technology, now it
has been greatly benefited from it. Taking the software as an example,
it has become a part of the aerospace systems, and actively involved in
all stage of the system’s life cycles, from conceptual planning, design,
analysis, simulation, verification, manufacturing to the end deploying and
maintenance. In most of the top-ranking companies in this field, seamlessly
integrated platforms, which include various kinds of software packets,
are highly employed to carry out a full digitalized modeling, design,
performance analysis and verification of the aerospace products.

From the traditional aerospace engineering tasks, it is well known that
the developing process of such a system often involves multi-disciplines
and a complete team of engineers; when this process is implemented with
the help of software packets, then with no doubt the software is often
complicated and on large scale. Meanwhile, due to the uncertainty of
investigated issue under some circumstances, software must be multi-
functional and highly adaptive. All these made the efforts to develop
appropriative software packets by the researchers themselves, not only
time and money consuming, but also with low efficiency and reliability.
Hence, people often purchase commercial software products for most of
the current tasks.

On account of the specialized performances and complicated developing
process, this kind of software packets is often costly, which could be

!Crarps ny6nukyeTcs B aBTOPCKOH peaKIiu.

118 ISSN 0236-3941. Bectauk MI'TY um. H.O. baymana. Cep. “Mamunoctpoenue”. 2006. Ne 1



affordable only by big companies or institutes. Besides, due to the all-
purpose orientation of these software packets, some given problems are
beyond their working scopes. Further more, considering on the world
political, economical and security concerns, some hi-tech products are not
obtainable world-widely. Hence it is very important for small group of
researcher to use the software engineering theory and practical experiences
as reference when developing their own aerospace software packets.

1. Software Engineering. Software design has experienced several
developing stages in the last several decades, from program design in the
earlier years, to the program system design, till the software engineering
after 70" last century. Adopting the well-developed engineering manage-
ment, control and review methods, applying them to software analysis,
design, coding, test and maintenance phases, Software Engineering employs
generic engineering theories and methods to develop software products.
It mainly focuses on the following aspects like development feasibility of
software tasks, software architecture, software design methods and toolkits
used for software design. It is software engineering, which makes software
becoming a scientific engineering subject.

1.1. Software Life Cycle and Process Model. The whole time period
of software from its kick-off to the end of its usage is called Life Cycle. To
reduce the complexity of software development and maintenance, software
life cycle is often divided into the following stages; each stage has their
definite tasks.

Planning. To define the objectives of software project, and determine
available resources and budget for its implementation. To study both
technical and economical feasibility of the project, and estimate the project
schedule.

Requirement Analysis. To discuss the customer’s requirements. This
stage is fulfilled through the cooperation of customers and software
engineers, the final requirements should be explicit.

System Design. To convert all requirements into logic modules, each
module answers certain requirements.

Program Coding. To code the program modules using a selected
programming language.

Test. To verify the correctness and reliability of the software, usually
startup with separate module tests, then assembled software test.

Operation and Maintenance. To correct bugs and faultiness in software,
which are discovered through appliance of software product

In the life cycle of a software product, different projects usually
adopt different Process Models depending on its scale, complexity and
characteristics. Frequently used models including Waterfall Model, V
model, Incremental Model, Evolutionary Model, Spiral Model, Fountain

ISSN 0236-3941. Bectnuk MI'TY um. H.O. baymana. Cep. “Mammnoctpoenue”. 2006. Ne1 119



Model and Intelligent Model, etc. Different models organize and implement
the life cycle stages in different orders or sequences. A small scale software
project with clear requirements will usually adopt the waterfall model for
instance, the 6 stages of software life cycle will be implemented in
sequential order, each stage generates its semi-finished products, and the
target software product will be generated in the end. For projects which
have only blurry system requirements, requirements can’t be clearly defined
or requirements are rapidly changing, Incremental Model or Evolutionary
Model are often proposed, these two types of model permit to develop
a software system based on limited requirements and when requirements
being updated or changed, software can be quickly reinforced and amended
from the beginning.

1.2. Software Architecture and Software Design Method. Software
Architecture reflects the high level architecture of a system. There is yet
a standard definition, but it often indicates the structure or structures with
which the software system is constructed, they form all portions of the
system, both the external characteristics and relationships between different
portions.

Software Architecture is a system abstraction on a higher level,
which reveals the earliest design of the system. It simplifies the system
components and their inner relationships; however it can also distinctively
draw the existing problems in the system. If each part of a software system
can fluent communicates with each other in the selected architecture, then
the usability and quality of the system can be more easily guaranteed. This
also helps to improve the reusability of software components.

Several aspects should be mainly considered when the software
architecture is built, i.e. how to organize all components and integrate
them into a system; how to design the control structure and data flow in
the system; how to solve the communication problems between data and
control info; how to define communication protocols and interface control
mode; how to mark off functions among components and modules; how to
evaluate the performance and expandability of the system.

The representative architectures for software includes pipe-filtering
system, hierarchy system, virtual pattern for simulating additional functions
of hardware or software to keep the product transplantable, client / server
system, data based system like warehouse system, hyper text system or
blackboard system etc.

To different software architectures, different design methods can be
implied. In principle, 3 types of methods for software development are
often hired, (1) data-driven analysis and design method; (2) function-
driven analysis and design method; (3) Object Oriented analysis and design
method.

120 ISSN 0236-3941. Bectauk MI'TY um. H.O. baymana. Cep. “Mamunoctpoenue”. 2006. Ne 1



First type of method is mainly used for data-based systems, like
warehouse system and hyper text system. Representative usage for function
driven method is structural analysis and design, it takes a top-to-bottom
approach and breaks down a complex system into a series of subsystems
and subsystems into modules, each module accomplishes a simple function
and keeps corresponding independency, thus makes the whole system easy
to be implemented and maintained. Object oriented method combined the
first 2 types of methods, is object-driven method, where object consists of
both data and function. It starts up from analyzing the component objects in
a system, taking the bottom-to-top approach to finish analysis and design.
The main characteristics for object oriented method include: encapsulation
of data and function makes objects easy to be expanded, inherited attributes
of the son class from father class keeps software easy to be evolved, and
messages link the objects dynamically.

Currently, Object Oriented method is a hotspot of investigation, but
Structural Analysis and Design is still the well matured and widely used
method in software engineering, especially in aerospace industry, its only
shortage is the low reusability.

1.3. Standardization in Software Engineering. The concept of Software
Engineering was firstly been brought forward in 1969, hence, the standardi-
zation efforts for it have never been ceased in international standardizing
organizations. After 30 years’ progress, the major standards for software
process, technology, methods, tools and managements have been fully
developed. The most remarkable one is the “Software Engineering Body
of Knowledge (SWEBOK)”, published in 2001 by Union of ISO and IEC
technical committee. In this document, software engineering discipline
was subdivided into ten Knowledge Areas, which included Software
Requirements, Software Design, Software Construction, Software Testing,
Software Maintenance, Software Configuration Management, Software
Engineering Management, Software Engineering Process, Software Engine-
ering Tools and Methods, Software Quality. For each knowledge area,
detailed descriptions and specifications are given in this guide.

Taking the Software Requirements as an example, it is separated into 6
sub-areas:

Requirement Engineering Process. Objective of this sub-area is to
decompose complex system into simple components.

Requirements Elicitation. Based on use case design and pattern design
to recognize different software requirements, including customer’s aim,
application field of knowledge, operational and organizational background
of the system etc.

Requirements Analysis. Using a series of analysis tools to detect and
resolve conflicts between requirements, to discover the bounds of the

ISSN 0236-3941. Bectnuk MI'TY um. H.O. baymana. Cep. “Mammunoctpoenue”. 2006. Ne1 121



system and how it must interact with its environment, to elaborate system
requirements and software requirements. For different design methods,
analysis tools are different. Structural Analysis and Design uses data flow
diagram, state transfer diagram, control flow diagram, data dictionary with
process descriptions. For object oriented method, data flow diagram, state
transfer diagram, entity-relationship diagram and use case analysis tools
are employed.

Software Requirements Specification. In accordance with the requirement
specification template, to create software requirement specification descrip-
tions, numbering each items of requirement and giving clear indication of
their origination. To create requirement tracing matrix, thus control project
schedule.

Requirements Validation. To check the uniformity, integrity, validity
and feasibility of requirements.

Requirements Management. To trace and control the update process of
requirements. If an item is changed when the project is in progress, impact
of the requirement change should be analyzed and recorded. All status of
each item must be tracked.

Based on appropriate requirements analysis, the working group may
choose proper process model and work out project developing plan; along
with the project development progress, requirements concerned risks should
be evaluated and mitigated.

Resembling Requirement Engineering, all the other 9 knowledge areas
have been clearly defined and specified. Software Design contains both
high level design and detailed design, which is separated into 6 sub-
areas, including: basic concepts, key issues of software design, structure
and architecture, software design quality analysis and evaluation, software
design notations and software design strategies and methods.

1.4. Computer Aided Software Engineering (CASE).

Along with the engineering development and management of software,
methods and tools used in software project are dramatically changing, more
and more CASE tools are appearing.

CASE tools may consist of different components. Comparing with
different stages of software life cycle, CASE tools can be divided into
2 types, high level tools and low level tools. The high level CASE tools
may automatically form the project plan; help to generate requirements and
requirement description documents; and lay the project course. Low level
CASE tools help to implement software coding, testing and maintaining
works automatically. At present, one can either find independent high level
CASE tools, like Visio in Microsoft office packet, or integrated CASE tools,
which combined both high and low level of design tools in a uniformed
development environment, like STP from IDE company, Rose integrated

122 ISSN 0236-3941. Bectauk MI'TY um. H.O. baymana. Cep. “Mamunoctpoenue”. 2006. Ne 1



packet from Rational company. In China, the Blue Bird I System can
support Waterfall process model and structural analysis and design method
for software development. Its upgrade version Blue Bird II may support
object oriented analysis and design method.

Using these CASE tools reasonably and skillfully can dramatically
increase software productivity with high quality and low costs.

2. Application of Software Engineering in Aerospace Industry.
Software Engineering has achieved great progress in the last half century;
nevertheless, software crisis still exists. World-widely, 80~90 % projects
in information field can’t reach their original target, 80 % exceeds their
budgets, and around 40 % projects failed at the end. Figures and Situations
in China are still worse?.

2.1. Software Management and Acceptance at NASA. As the most
famous aerospace organization in the world, NASA started up its software
research works roughly 30 years ago. In 1976, Software Engineering
Laboratory (SEL) came into existence in Goddard Space Flight Center
(GSFC). Based on a series of research works, the laboratory has established
corresponding standards for software process and acceptance.

Based on the experiences from many years’ software projects, NASA
has summarized a conclusion: there is no single solution for all problems;
no any life cycle models, analysis and design methods, or test methods can
fit all NASA software projects. To satisfy different requirements, there must
be individual plan for each project. Therefore, NASA prompted its own
document “NASA software management guide” to manage and regulate
software development contract.

Generally speaking, aerospace software engineering has achieved
significant progresses in software quality, reliability, reusability within these
years. Many specialized CASE tools can provide integrated platform for
digitalized flight vehicle design and simulation, among which, ModelCenter
from Phoenix Integration company, iSight software packet by Engineous
Software company and AML of Techosoft company are some examples
of these CASE tools. Many leading aerospace companies are taking the
advantage of these tools to win more and more contracts relying on
effective and high quality designs created by them.

2.2. Domestic Applications of Software Engineering in Aerospace
Field. The commencement of Software Engineering related works in China
has experienced several decades’ delay comparing to the world. In the past
10~20 years, progresses have been made and a set of national standards
have been established to standardize software engineering. But the software
industry still needs more time and efforts to catch up the world’s paces.

Zhttp://media.ccidnet.com/media/ciw/1315/d0901.htm

ISSN 0236-3941. Bectnuk MI'TY um. H.O. baymana. Cep. “Mammunoctpoenue”. 2006. Ne1 123



In aerospace industry, software engineering concepts have been widely
spreaded since 1996. On one of the aerospace industry’s management
meetings held in 1998, among the other work arrangements, several more
items were listed, i.e. to improve aerospace software quality, to establish
software certification criterions and acceptance standards in aerospace
industry. Now though the situation is still far from satisfying, progresses
are steadily achieved.

3. Conclusions and expectations. As a result of mixed reasons,
software industry in China is still underdeveloped. Few work has been
done concerning on software reusability, both theoretically and in practice.
Wide gaps still exist comparing with many other countries. Hence it will be
a primary task for our engineers in the near future, to realize the importance
of software engineering and its impact in other fields, to master the basic
theory, to use correct methods and tools, to learn from the experiences and
lessons obtained by others, and to strive for more progresses in this field.

REFERENCES

I.lan Sommerville. Software Engineering, Machinery Industry Publishing
Company, Beijing, 2003. 1.

2.Shari Lawrence Pfleeger Software engineering — theory and practice.
Tsinghua University, Beijing, 2003. 8.

3.Len Bass, Paul Clements. Software architecture in practice. Tsinghua
university, Beijing, 2002. 10.

4.Scott W. Ambler, Object Oriented Software Engineering. Machinery Industry
Publishing Company, Beijing, 2003. 6.

5.Ian Sommerville, Pete Sawyer Requirement Engineering, Machinery
Industry Publishing Company, Beijing, 2003. 8.

6. Software Engineering Laboratory, SWEBOK, version 0.95, 2001. 5.

7.Zhou Su, Wang W en. Software Engineering, Science publishing company,
Beijing, 2002. 9.

Cratbs noctynwia B penakuuto 8.07.2005

JI Simei (II3u Cumoii), acquired her PhD at Bauman Moscow State Technical University
(MI'TY unm. H.D. baymana) in 2001. She works in Bijing Institute of Technology as an
associate professor since 2002, and currently involves mainly in pedagogic as well as
research works in fields of Flight Dynamics and Control, Flight Vehicle Design and
Computer Aided Design.

Cumdii 1[3u 3ammrTuna auccepraiMio Ha 3BaHHE KaHA. TexH. Hayk B 2001T. B MITY
uM. H.D. baymana. JlonieHT [IeKHHCKOTO TEXHOJIOTMYECKOTO MHCTUTYTa. Crenuanu3upy-
eTcsl B 00J1acCTH JMHAMUKY T10JIETa ¥ YIPABJICHUs [TOJIETOM JIETAaTeNNbHBIX allaparos, Ipo-
€KTHPOBaHUs JETaTeIbHBIX alMapaToB, B TOM YMCJIE C HUCIONb30BAaHHEM METOAOB KOM-
MBIOTEPHOT0 MOJIETMPOBAHMUS.

124 ISSN 0236-3941. Bectauk MI'TY um. H.O. baymana. Cep. “Mamunoctpoenue”. 2006. Ne 1



