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Abstract Keywords

The authors showed the possibility of using mathe- Design, aerodynamic profile,
matical models based on artificial neural networks to  neural network, data interpo-
determine the aerodynamic characteristics of helicop- lation, neural network approxi-
ter profiles, as well as the ability to design new profiles mator

with specified aerodynamic characteristics. At the

first stage of work, an approximation model based on

a neural network of the multilayer perceptron type

was created to determine the coefficients of lift,

drag, and pitch moment of the profiles. This topology

has a number of distinctive features and is well suited

for solving such problems. Neural network training

was conducted. As a training set, the calculated data

of 3692 aerodynamic profiles were used. The accuracy

of the approximation of aerodynamic characteristics

was estimated. The expediency of using artificial

neural networks to solve this class of problems was

substantiated. At the second stage of work, to obtain

the geometry of new profiles, a mathematical model

was created on the basis of special classes of artificial

replicative neural networks, which allowed us to sig-

nificantly reduce the dimension of the space used to

describe the surface of the aerodynamic profile and

create a qualitatively new design system. Examples

were given of using the system for creating profile

families in the region of specified aerodynamic char- Received 09.12.2019
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Introduction. It is known that in the design of a new helicopter a reliable
determination of the aerodynamic characteristics of all its elements is of
fundamental importance. At the same time, the flight characteristics of the new
machine largely depend on the aerodynamic perfection of the rotor, which
cannot be achieved without the choice of basic aerodynamic profiles that provide
the required aerodynamic characteristics of the rotor blade in the entire range of
flight modes [1-5]. Currently, methods of both CFD and experimental
aerodynamics are widely used to search for optimal parameters of aerodynamic
profiles.

In the early stages of the development of the aircraft industry, the design of
profiles was based mainly on the methods of experimental aerodynamics.
Progress in computational approaches allows calculating the aerodynamic
characteristics of profiles, which significantly speeds up and cheapens the process
of designing a rotor blade. However, the direct application of modern numerical
approaches for calculating aerodynamic characteristics at the preliminary design
stage leads to a significant increase in the time and complexity of this process.

The methods currently used to determine the characteristics of aerodynamic
profiles can be divided into two large groups:

e based on the numerical solution of the system of equations of continu-
um mechanics;

e based on the generalization and interpolation of previously obtained
experimental and calculated data.

Traditionally, to evaluation the aerodynamic characteristics, the methods
based on the numerical solution of the system of gas dynamics equations and
describing the physical processes and phenomena when the flow around the
profile occurs, were used. Numerical methods, as a rule, require the attraction of
significant computing recourses for the calculations themselves and labor for the
preparation of the source data. This significantly reduces the possibilities of their
use, especially at the stage of preliminary (conceptual) design, where a large
number of variations are considered and the price of an incorrectly chosen
solution is high.

Attempts to circumvent the shortcomings of the above methods of mathe-
matical simulation have led to the development in recent years of mathematical
models based on a generalization of the available experimental and calculated
data. Such models are based on the results of field and/or computational
experiments conducted with various objects of the class in question, with minimal
involvement of knowledge from the subject area (process physics) [6, 7]. In other
words, models are “trained” on a variety of input and output data prototypes.
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They are capable of imitating (replacing) both data sources based on some initial
model, and models created on the basis of solving gasdynamic equations.
Adaptive models constructed in this way are also called surrogate models. Both
models (initial and surrogate) should have the same set of input and output data,
and the results of both models (for the same input data) should be close.

Currently, surrogate models created on the basis of neural networks are
successfully used in solving various problems of aerodynamic design. Reviews of
the use of such models in the field of aerodynamic design are presented in [7, 8].
The advantages of surrogate models are as follows: they have high speed
(hundreds of thousands of times faster than modern numerical methods),
require minimal computational resources, allow the use of previously obtained
calculation and experimental data, and prevent cases of non-receipt of the result
due to a solution divergence, which is typical for numerical methods. The
disadvantages of neural network surrogate models include the need for a large
amount of data to configure and train neural networks and model verification.
Examples of the use of neural network models in the design of aerodynamic
profiles for aircraft for various purposes are given in [9-12].

This paper presents the results of applying neural network models to the
problem of designing an aerodynamic profile with structural and aerodynamic
constraints typical of helicopter rotor profiles.

The first part describes the aerodynamic characteristics of neural network
profiles used as approximators. The obtained estimates of the accuracy of appro-
ximation of the main aerodynamic characteristics of the profiles are presented.
The second part is devoted to the creation on the basis of neural networks of a
special type of profile geometry generation module with specified aerodynamic
and structural characteristics. The final part provides an example of the
application of the proposed approach for generating a series of aerodynamic
profiles with predefined properties.

The use of ANN to assess the aerodynamic characteristics of profiles.
To approximate the aerodynamic characteristics of the profile, neural networks
of the multilayer perceptron type (multilayer forward propagation network) were
used. Such networks, as a rule, consist of many sensory elements (input nodes)
that form the input layer of one or more hidden layers of computational neurons,
and one output layer of neurons. Multilayer perceptrons have three distinguish-
ing features:

e each neuron has a smooth (everywhere differentiable) nonlinear activa-
tion function (usually sigmoidal) [6];

o the network contains one or more layers of hidden neurons that are not
part of the input or output of the network;
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e the network has a high degree of connectivity through synoptic connec-
tions.

The combination of these properties provides high processing power of the
multilayer perceptron. It is known that such a network has sufficient accuracy
and rate to predict [6].

At this stage, the training of neural networks was conducted. Training of a
neural network is understood as the process of minimizing the deviation of
output values on the available data (training set) by determining the weight
coefficients of neurons.

As a training set we used calculated aerodynamic lift coefficient C, re-

sistance coefficient Cy and pitching moment coefficient m; for 3692 aerodynam-
ic profiles in the range of angles of attack from -1.5° to 16.5° and Mach numbers
M from 0.3 to 0.82 with a constant Reynolds number Re = 3 - 10°. In total, the
training set contained 342 000 calculation points. The approximation errors
(RMS deviations) by the neural networks of aerodynamic coefficients were: drag
coefficient Cx o(Cx) =~ 0.00025, pitch moment coefficient m, c(m;) ~ 0.00032,

lift coefficient C, o(Cy) ~ 0.0062. The calculated data was obtained using the
VISTRAN code [13].

A comparison of the calculated (obtained using numerical methods) and
approximation (obtained using neural networks) dependences of the lift
coefficient Cy on the angle of attack o and polar for randomly selected profiles
are shown in Fig. 1. The results obtained for two Mach numbers 0.3 and 0.78
presented.

The results show that the use of artificial neural networks allows a fairly
reliable assessment of the basic aerodynamic characteristics of the profiles.
At the same time, neural networks provide high productivity: less than one was
needed to evaluate one variation 10~ s at CPU Intel Core i7-3820 3.60GHz.

The use of a special type of ANN to generate many random objects similar
to the original. To create many new aerodynamic profiles similar to those on
which the training took place, a mathematical model was applied based on
replicative neural networks, which are one of the subspecies of multilayer
perceptrons. These networks have a symmetrical architecture. Mandatory
attributes of such neural networks are the first and last layers, which have the
same number of neurons equal to the length of the input vector, and a narrow
“throat” — the middle layer of a significantly smaller dimension. One of the
options for a replicative neural network is a three-layer perceptron, in which the
number of elements of the input and output layers is the same, and the number
of elements of the middle hidden layer is much smaller.
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Fig. 1. Comparison of calculated and approximation aerodynamic characteristics
for two Mach numbers: M = 0.3 (a) and 0.78 (b)

After training, such a network can reproduce at the output the same vector
that is fed to the input layer of the perceptron. Such a network compresses
information in the area from the input layer to the middle and restores it on the
layers from medium to output. Moreover, on the elements of the middle layer
there is a representation of each vector, which is shorter than the length
of the vector supplied to the input. In fact, replicative networks can reduce
the dimensionality of data by moving to the so-called natural coordinates. This
approach was first applied to image compression. [14]. In the case of using
neurons with linear activation functions, this approach leads to the well-known
as principal component analysis (PCA) [6].

The problem of using a replicative neural network to generate new objects
was solved by the example of the generation of aerodynamic profiles. The three-
layer replicative network was trained on a variety of aerodynamic profiles,
the ordinate vectors of the profiles being the input and output of the network.
The network has an input and output layers of dimension M = 59 and a narrow
throat — the middle layer of a significantly smaller dimension of K = 6
neurons. To generate a new profile, a signal in the form of a K component vector
was applied to the output of the middle layer or to the input of the output (which
is the same thing). The components of this vector are random numbers with a
uniform distribution law, which are limited by the extreme values of the
corresponding components from the original set. After that, a vector with M
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components was obtained from the output layer, defining a new generated
profile. Typical profile forms obtained using this approach are shown in Fig. 2.
The original profile is marked with dots.
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Fig. 2. A set of profiles randomly generated in 6-dimensional space (M = 59, K = 6);
X, Y — profile coordinates normalized to the chord

The use of ANN of a special type for generating a series of aerodynamic
profiles with desired properties. To generate a series of aerodynamic profiles
with desired properties, a modification of replicative neural networks is
proposed, in which part of the input vector components (describing the
characteristics) go directly to the output layer. In this case, after training the
network, it is possible to create profiles by supplying a random vector to the
output links of the middle layer and the given values of the characteristics, to the
corresponding input neurons.

The following problem was solved as an example of applying this approach
to designing the rotor profiles of a helicopter. We need to construct a series
of aerodynamic profiles with a given maximum thickness t = 12 %, a given pitch

moment at zero lifting force mx = -0.01 at M,, = 0.3, a given drag coefficient

Cxo =0.0180 at M, =0.80 and a maximum lifting force coefficient Cjmax
at M, = 0.3, varying from 1.35 to 1.55 in increments of 0.05.

To solve this problem, a modification of the replicative neural network of
the “utoencoder” type was used [15]. The first and second hidden layers
compress information, the third and fourth — restore it (Fig. 3). Moreover, at
the output of the second hidden layer, a compressed representation of the input
vector appears.
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Fig. 3. Modified neural network

Two vectors served as a network input. The first vector (Input 1, see Fig. 3)
contained the ordinates of the profile and was fed to the first layer of the network,
the second vector (Input 2, see Fig. 3) contained the specified aerodynamic

characteristics: pitch moment at zero lifting force m; and number
M, = 0.3, drag coefficient at zero lifting force Cxo and number M, = 0.8 and

maximum lift coefficient Cymax at M, = 0.3. The second vector was fed
to the input of the 3rd hidden layer located behind the narrow second layer.
The network output (Output 1, see Fig. 3) was the profile ordinate vector.

For training, we used data obtained by calculation for a set of 3379 profiles.
To create this set, the replicative neural network considered earlier was used.
It should be noted that the maximum thickness for all profiles of the set was
t=12 %.

The training consisted in minimizing the deviation of the output vector
(4th layer) from the input vector containing the ordinates of the profiles of the
base set (Input 1, see Fig. 3). In this case, the maximum and minimum values

of the components (A;) of the output vector of the 2nd layer, which displays the
profile in a compressed form, were determined.

After training, a generating neural network was formed, which consists of
the 3rd and 4th hidden layers of the original network and two vectors were fed to
its input. The components of the first vector are limited by the extreme values of
the corresponding components of the output vector of the 2nd layer and
correspond to the compressed image of the profile, the components of the second
are the specified aerodynamic characteristics of the profile.

Further, the obtained neural network was used to solve the problem of
creating a series of profiles formulated at the beginning of the section. The profile
NACA23012 is selected as the base profile. A vector was supplied to the first
input of the generating neural network, which is an image of the NACA23012
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profile in compressed space, and to the second input, the values of the specified
aerodynamic characteristics. In the obtained series, the profiles differed only in
the values of the maximum lift coefficient, which was supplied to the second
input of the generating neural network.

The forms of the obtained profiles are shown in Fig. 4, markers highlighted
the base profile of NACA23012. It should be noted that the obtained profiles
differ slightly from each other, the maximum deviation of the ordinates from
NACA23012 is less than 0.15 % of the profile chord.
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Fig. 4. Profile series geometry, X, Y — chord normalized profile coordinates

To verify the achievement of the design goal, the obtained series of profiles
were calculated according to the program [13]. The calculation results are shown
in Fig. 5. In Fig. 5, a the markers show the characteristics of zero pitch moment
mzo obtained for a series of profiles depending on maximum lift coefficient
Cy max. Here are the points corresponding to the set of profiles on which the
neural network was trained and the point corresponding to the NACA23012
profile is shown. Similar data for the dependence of the resistance coefficient
Cxo at zero lifting force from the coefficient of maximum lifting force C,max
are given in Fig. 5, b.

The calculated dependences of the lift coefficient of the profiles on the angle
of attack for the number M = 0.3 are shown in Fig. 6.

It should be noted that the calculated coefficients of the pitch moment 19

and drag Cyx for the obtained profiles are close to the given, which were
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Fig. 5. Aerodynamic characteristics of profiles in coordinates:

Cy max

a— Cy max> 11205 b - Cy max» Cx()

fed to the input of the neural network. For the coefficient of maximum lifting

force, there is a discrepancy with the specified values for the values Cy max > 1.47.
The discrepancy occors because of the fact that in this area of values there is not
enough data that was used to train the neural network.
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Fig. 6. Dependencies C,= Cy(a), M = 0.3

Conclusion. The possibilities of using artificial neural networks in the tasks
of aerodynamic design of aircraft elements are considered. A special class of
neural networks — the so-called replicative or replicating neural networks is used
to build design objects in a given area. It is shown that replicative neural
networks can be used as generators of aerodynamic profiles with specified
aerodynamic and geometric characteristics. Examples of constructing families of
profiles in the area of the given values of the coefficient of maximum lifting force,
pitch moment, drag and maximum thickness are given. The proposed approach
to design problems is not limited to the subject area of choosing aerodynamic
profiles for the rotor of a helicopter.
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