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Abstract Keywords

The study is devoted to studying motion of a viscous Magnetic hydrodynamic
electrically conductive incompressible fluid, which equations, electrically conductive
initially rotates as a solid body with constant angular fluid, normal oscillations,
velocity together with a porous wall bounding it under  boundary layers

the influence of suddenly appearing longitudinal

oscillations of the wall. The wall forms an arbitrary

angle with the axis of rotation. Unsteady flow is

induced by longitudinal wall oscillations, injection

(suction) of the medium directed perpendicular to the

porous plate surface and by suddenly activated

constant magnetic field directed on the normal to the

plate. Solutions were constructed for velocity fields and

fluid pressure. Induced magnetic field in the flow of

electrically conductive fluid was determined. A num-

ber of particular cases of the wall motion were

considered. Based on the results obtained, separate Received 26.12.2018
structures of the boundary layers adjacent to the wall ~Accepted 12.07.2019
were examined © Author(s), 2020

Introduction. This study summarizes the previous results [1-3]. It is
demonstrated that in the absence of the medium injection (suction) and in the
absence of a magnetic field the solution coincides with the results of paper [3],
and in the absence of rotation, magnetic field and medium transverse flow the
given solution is becoming a solution to the problem of unsteady motion of
viscous fluid bounded by a moving flat wall [1].

In the recent years, interest aroused to electromagnetic pumps and measuring
instruments based on magnetic hydrodynamic effects in connection with
development in technologies of nuclear reactors with metal heat carriers [4-9].

Studying the effect of spontaneous generation of a magnetic field is
important from the practical point of view. Cooling of the nuclear reactors is
provided by using the liquid sodium. If the reactor size is increasing, volumes of
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liquid metal are also rising, and the metal is moving at a high velocity, and its
conductivity is very high. As a result, a magnetic field could spontaneously arise,
which would alter the process of heat and mass transfer in the reactor. Such a
possibility should be foreseen and prevented [10-14].

Research in the magnetic hydrodynamics area has also other practical
applications, especially important in metallurgy. The fact is that an
electromagnetic field actively affects the liquid metal. Changing the magnetic
field magnitude and its configuration, as well as the electric current that passes
through the liquid metal, could lead to ensuring control over its flow [15-19].

Analytical solutions of magnetic hydrodynamic equations. The present
work studies unsteady flow of a viscous electrically conductive incompressible
fluid in a half space bounded by an infinite flat wall, to which normal the
medium injection (suction) is performed. The fluid and the plate are being in a
state of rotation as a solid body with constant angular velocity constituting the 3
angle to the plate, 0 <3 <7 /2.Unsteady flow is induced by longitudinal wall
oscillations and medium injection (suction) produced at the da (t) velocity

perpendicular to the porous plate surface and incidentally introduced magnetic
field with the By = const induction directed in the normal to the plate. It turned
out that in this case, an exact solution could be found to the three-dimensional
nonstationary equations of magnetic hydrodynamics. Schematically, the problem
statement is presented in Fig. 1.

Fig. 1. Schematic problem statement under consideration

Let us consider incompressible fluid having p density, v kinematic viscosity,
[ magnetic permeability and o electrical conductivity, which fills the Q half-space
bounded by the H porous wall. The fluid and the wall are rotating as an integral
unit with the @ = const angular velocity around the direction not perpendicular
to the plate.
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Nonstationary flow is induced by incidentally starting longitudinal
oscillations of the wall, which begins to move with the () speed. Medium
injection (suction) is performed through the porous plate surface at the d(t)
velocity along the normal to the H wall. In addition, constant magnetic field
with the By induction is applied along the normal to the plate surface.

Let us connect the Oxyz Cartesian coordinate system with the H plate in such
a way that the Oxz plane coincides with the H plane, and the Oy axis is directed
inside the fluid. Let €y, €, and €, be the unit vectors of the Cartesian coordinate

system. Fluid motion in the Oxyz system rotating at the @y angular velocity in
the magnetic hydrodynamics approximation (infinitely conductive fluid) is
described by magnetic hydrodynamics equations:

(VV)17+%+2(730x17=—VP+VA17+LrOtE><§;

divy=0; 7€Q Hp

ivi=0; 7 €Q;

oF L (1)
— =rotux B;

ot _

divB=0; 7 €Q,

as well as by boundary and initial conditions, which in the usual notations have
the following form:

17:(17(1‘), a(t)é,)at FeH, t>0;
Boey at 7 € H;

|17 at| | >, t>0; )
‘B‘: By at || >, t>0
and
v(7,0)=0 at t=0; 3)

B(7,0)=0 at t=0.
Here 7 is the radius vector relative to the O pole; v is the fluid velocity; P is the
pressure; p is the density; v is the fluid kinematic viscosity; p is the magnetic
permeability and B is the magnetic induction.
In the system of equations (1), the U centrifugal forces and gravitational
potential are included in the P pressure.
Solution to the system of equations (1) could be found in the following form:

17={vx (y, t), a(t), vz(y, t)};

P =20, a(t)x—Z(D()xa(t)z—aaa—(tt)

4
y+q(y.t), @

where q( JA t) is the unknown pressure function, wgx = ®oéx and wg, = e, .

ISSN 0236-3941. Bectunx MI'TY um. H.9. Baymana. Cep. Mammnoctpoenne. 2020. Ne 1 109



A.A. Gurchenkov

To determine the ¥ velocity and the B induction field, the following system
of equations is obtained:

2
Oy +200,7. = d vzx _a(t)avx +Lp OB,
oy d up Oy
2
%—Zﬂ)oyvx =V 0 Ve —tl(t)avz +LBO aBz 5
ot ay? d pp Oy
%:za(aoxzy)-i[m B 5, 532); (5)
oy Hp oy oy
OB, _ B, OVy :
ot oy
OB, _ B, ov, )
ot Oy

boundary and initial conditions:
v(y.t)=(u(t), a(t)é,) at y=0 and t >0;
B(y,t)=Byé, at y=0 and t >0;
7(y,t)| >0 at y > o and ¢ >0; (6)
By, B, >0 at y > and t > 0;
v(y,0)=0att=0and y>0.

Let us consider a case, where all the values in (5) and (6) depend on time
through the e* factor, and A is the complex number (quasi-harmonic mode). In
addition, the injection velocity is set as a (t) =a =const. It should be noted that
a > 0 corresponds to the medium injection and a < 0 — to the medium suction.

In this case, the system of equations (5) and the boundary conditions (6)
could be written in the following form:

2
kvx+2§2vz:va—2vx—aivx+&i3x;
oy d ~ upoy
2
KVZ—Zvazva—zvz—ain+&iBz; (7)
oy d  updy
}\,Bx=B()—1/x; 7\,Bz =B()QBZ.
Oy

Here Q= wg¢,.
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Excluding the (By,B;) magnetic field from equations (7) using the

By 0 By 0
B, =70—vx and B, =—0—vz formulas, three systems of equations are

Oy A dy
obtained for determining the ¥ velocity field, the B magnetic induction and the
q ( Vs t) pressure field:

2
Avy +2Qv, —(v+—Ja—vx —aivx;

Hph ) dy? oy
2
Av, —2Qv, —(v+—Ja g —aivz; (8)
uph ) oy oy

Ve (0)=uy; vz (0)=u; at y=0; vx,v; >0 at y —> o5

B()@

B ; 9

s Vyx 9)
Bo 0

B —V;, By,B; >0 at y — o0;

z N a)/ z X y

oq _ 1 0 ) )

—=2y(0gxé,) — —— +B,%);

Oy ( 0 y) 2up ay( ¥ ‘ ) (10)

q(y,t)—)O at y — oo,

System of equations (8) is used to determine the velocity field, system (9) is
used to determine the B induction, and equation (10) is used to determine the
pressure field from the indicated velocity field and induction.

Let us introduce a complex structure:

V=vy+ivy; B=By+iBy; t1 =u, +iu,.

Then the system of equations (8) and (9) will take the following form:

02 . 0 .
AV —i-2Q0 = V+_X a—v aa V;
up )’ Y
A B() 81/ (11)
B=
A By

To determine the v velocity field, let us use the ordinary differential
equation of the second order:

2

V+BL a—f/ aﬁ—(k—z 2Q) v =0;
HpA ) By? oy

v—>0 at y —> o0; (12)

7(0)=1(0).
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Characteristic equation (12)

BOZ 2 .
V+—— [x* —ax—(A—i-2Q) =0.
1PA

Equation roots

a a? A—i-2Q

X2 = N T Nt >
2(v+BOJ 4(V+BO)2 va D
HpA upA HpA

If A #+i-2Q, solution (12), taking into consideration the boundary conditions,
will take the following form:

Rexl,z <0.

—%2 (13)

i (y)=i(0) 22 114 (0) e, 2
where E; —exp(x] y) i =1, 2, velocity field is

&(y,t):e“[ﬁ(O)El 5 +i4(0)xé, BB }

2
fluid pressure
(6)())(5”[ ( 1) (1 IH k
Jt)=——=1u(0)| —+— |[+u(0)xé,| ——— | |eM -
a(r 1) =2 | #(O)| o i (0)xEy | -

11 » 2
———B(y,t
2 o (3:1)

and induction vector is

A x1E1 + 2 E ﬁxE x2E> | B
B(y,t) [(0)11222 (0) 11222:|}f)

Let us consider the resonance case at

5 (1) =M |:ﬁ(0)E1+1+iﬁ(0)><Ey Elz_l]

Here

frme [V+Bo/(upk)j =

at A=—i-2Q)
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1+ E,
2

+iii(0)xée, 1_2E2 };

()= (0)

here

ay J
v+B7/(uph)

In both cases, at a <0 and y — oo, the velocity field

E =1 E, =exp(

3, t)=%e“ [(0) F i1i(0)x&, ]

is oscillatory in nature and is not tending to zero remaining a limitation.

Solution in this resonance case satisfies the boundary conditions on the H
plate, but does not satisfy the conditions for infinity, ie., a so-called
hydrodynamic paradox is taking place.

Boundary layers structure. Let us study expression (13) in more detail. Let

the plate move at the velocity of # (t)=1i(0)e*, A = —o +io.
A case will be considered, when any injection (suction) of fluid through the

plate surface is missing. Then the velocity field of viscous electrically conductive
liquid will have the following form:

- ; ~ Ei+E, . E-E
v(y,t):e(—““@)t[u(0)1_2+iu(0)xey 12 2], (14)
/ AFi-2Q
where E; =etV; E; =et?); po = +21—, Repyn <0.
v+ By / (up2)
For convenience, the following notations are introduced:
1
NC+iD = M1,2 :—+ik1’2,
31,2
index 1 corresponds to the “~” sign, index 2 — to the “+” sign.
Wherein
—0A+B(0F2Q B+A(0F2Q
¢ AT B(0F20) ), aBrA(0F29) (15)

A +B2 A%+ B?
where, in turn, the A and B values are connected to the problem parameters by
the following relations:

2
oBj

up(oc2 +0)2)

2
®B;

A=v-— —m.

; B=
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Then, the 8, and k;, values having physical meaning of the boundary
layer thickness and of the wave number are determined by the following
formulas:

1 _NC+D*+C _( 2 J_l
- > 1,2 — — .
&%, 2 C2+D?-C

Given these notations, the velocity field takes the following form:
— ) y
17 ()/, t) = e_atei(Dt M e o1 e—ikly +e 37 e;kzy +
2

— — y y
u(0)xe - . -4 .
+ l% e 81 e_lkly —e 82 elkzy —

— ﬁ(0)+ia(0)X6)’ e—ate_ée—i(mHkly)_i_

2
- - - y
4 u (0) —w (0) X€y e—ate_gei(mszy)_
2
Finally, we have
5= Ay rot) 4 i eilbarron) (16

Where

P Y
A1=%[ﬁ(0)+iﬁ(0)xé},]e‘°‘te 3, A2=%[ﬁ(0)—iﬁ(0)x5y]e‘°‘te 5,

Velocity field of the electrically conductive liquid is presented in the form of
two plane waves induced by the plate damped harmonic oscillations. Phase
velocities of these waves are, as follows:

() (J)\/z

1
\/OLZAz + B? (w—2Q)2 _B(0-2Q)-aA
A%+ B? A? + B

N | —

o2

)
Voo =—-—=

2 _
\/a2A2+B2 ((,0+2Q)2 _ B(0+2Q)-0A 2
A? + B A? + B
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In this case, the wave numbers have the following forms:
1

) 1\/oc2+(oa—2Q)2 B(0-2Q)— oA |
-

A? + B2 A? + B2

V2
61= 1°

\/oc2+((o—2£2)2 B(0-2Q)-0A 2
+
A%+ B? A%+ B?

B3 (B§ —2vocup)
W2p? ( a2 + o )
Let us consider the resonance case o =2Q, then

where A2 +B2=v%+

1 o? 0A 2
f=—= T T |
V2 VA2+B2 A2+B

V2

-
/ o oA 2
A?+B? A%+ B?

Let us choose the BZ = 2vayup field induction. Then A2 + B? = v?;

o1 =

__o2vapp v-20.2 _\)492—()(2
u’p? (oc2 +4§22) a2 +40% g2+4Q%

2
kl=\/g L : 61=\ﬁ,/1+%. (17)
v 1+0c2/(4§22) o a

The k; wave number and the §; boundary layer value do not dependent on
the fluid magnetic permeability and electrical conductivity, and are determined
only by the o attenuation coefficient and the v fluid viscosity.

Nature of the second wave propagation does not depend on the features of
the first plane wave motion.

Fig. 2 and 3 present dependences of the boundary layer and of the wave
number on the plate oscillation frequency. The relations found completely solve
the problem.

A=v

In this case

ISSN 0236-3941. Bectunx MI'TY um. H.9. Baymana. Cep. Mammnoctpoenne. 2020. Ne 1 115



A.A. Gurchenkov

alpha = (-0.706790) a = (4.194962) mu = (1.617892) alpha = (-0.706790) a = (4.194962) mu = (1.617892)
rho =(2.965722) Omega = (-8.898726) rho = (2.965722) Omega = (-8.898726)
nu = (6.121586) B = (41.520654) nu = (-6.121586) Bo = (41.520654)
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Fig. 2. k; wave number (a) and 3, boundary layer (b)

alpha = (-0.706790) a = (4.194962) mu = (1.617892) alpha = (-0.706790) a = (4.194962) mu = (1.617892)
rho =(2.965722) Omega = (8.898726) rho = (2.965722) Omega = (-8.898726)
nu = (6.121586) B, = (41.520654) nu = (-6.121586) B = (41.520654)
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Fig. 3. k, wave number (a) and &, boundary layer (b)

Conclusion. Analysis of the problem was carried out in regard to unsteady
flow of a viscous electrically conductive incompressible fluid in a plane-parallel
configuration. Exact solutions of three-dimensional nonstationary equations of
magnetic hydrodynamics were found. In this case, no restrictions on the nature
of the plate motion are imposed. Velocity field in the flow and shear stress
vectors acting from the fluid upon the wall were determined. In regard to the
problem of normal wall oscillations, the resonance case was considered and the
structure of boundary layers adjacent to the plate was investigated. Mathematical
procedure for integrating the system of differential equations within the problem
examined could be used to study more complicated problems. In addition, the
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results obtained could be used to account for the force effects during fluid motion
in channels of various shapes, as well as in filtering problems and in simulating
various physical phenomena in the moving fluid.

Translated by K. Zykova
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