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Abstract Keywords 
In this paper we considered representation-theory-
based eigenfunction classification of clustered 
launch vehicles vibration problems. Classification of 
vibrations modes was obtained by using projection 
operators, related with corresponding subspaces of 
irreducible representations of considered mechani-
cal system symmetry group. For multiple frequen-
cies we proposed the approach which allows to 
reduce corresponding vibrations modes to launch 
vehicle stabilization planes. In addition, for the 
launch vehicle with four boosters, the projections 
onto irreducible representations subspaces of right-
hand side of the motion equations were found 
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Introduction. In the analysis of launch vehicle dynamics, the method when 
the solution of corresponding evolutionary problem is decomposed by natural 
vibration modes is widely used [1]. In the case of the tandem launch vehicle, 
vibration modes can be classified into longitudinal, bending and torsional. As 
a result, the analysis of launch vehicle motion can be performed separately 
according to guidance system channels, by the assumption that different 
abovementioned types of vibration do not affect each other. The longitudinal 
vibrations of a clustered launch vehicle were investigated in [2–4]. 

In case of a clustered launch vehicle, the utilization of natural vibration 
modes in dynamic processes analysis becomes much more complicated, due to 
launch vehicle undergoes joint longitudinal-bending-torsional vibrations, and 
thereby, the assignment of any given vibration mode to the considered control 
loop is not univocal. In addition, the eigenvalues spectrum of the 
corresponding spectral problem (vibration frequencies) is much denser than 
for a tandem launch vehicle (several dozens of frequencies less than 10 Hz for 
a heavy launch vehicle), therefore the use of the entire set of vibration modes 
greatly complicates the problem. 

Works [5–8] give a classification of vibrations modes of a clustered launch 
vehicle, based on possible displacements of the core stage. In this paper, using 
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a clustered launch vehicle with four boosters as an example, we propose a 
metedology of vibration modes classification for clustered launch vehicles with 
an arbitrary number of boosters based on the symmetry of the mechanical 
system being investigated. In our approach we use the representation theory of 
finite groups of symmetry transformations. A similar approach was previously 
used in studies of other mechanical systems having symmetry [9–14]. 

Problem statement. The beam system is used as the analytical model. The 
elastic elements will simulate spider beams which hold boosters. Transverse 
and axisymmetric fluid sloshing in tanks, as well as vibrations of structural 
elements (propulsion system, pipelines, etc.), if necessary, can be taken into 
account with the help of an oscillator analogy. Since the movements of 
oscillators are unambiguously expressed through the beams displacements, 
and if their inclusion into mechanical system does not break the symmetry, it 
follows that symmetry classification of vibration modes will not change as well. 

The Fig. 1 shows the beam model of a clustered 
launch vehicle. This mechanical system consists of 
a central beam and identical side beams connected 
to the central one by linear-elastic connectors. The 
central beam is located along the X0 axis of the 
global coordinate system X0Y0Z0, and the end of 
the beam corresponding to the lower part of the 
rocket coincides with its origin. The side beams are 
located in parallel to the central one at an equal dis-
tance from it, through angular intervals equal to 
2  / N (N is the number of side beams). The side 
beams correspond to the indices j, and the beam 
with index 1 placed in the X0Y0 plane, the indexing 
of the beams is increased counterclockwise around 
the axis X0. The lower ends of the side beams are 
located in one plane parallel to Y0Z0. Further, we 
assume that this plane coincides with Y0Z0. 

A local coordinate system XjYjZj corresponds to each side beam. A coordinate 
origin coincides with the lower end of the side beam, the Yj axis is directed at an 
angle of 2π ( j – 1) / N to the Y0 axis, the Xj axis is parallel to the X0 axis, and the Zj 
axis complements the coordinate system to the right-handed one. 

The displacements of the sections of beams along the Xj, Yj and Zj axes are 
denoted as uj (x, t), vj (x, t) and wj (x, t), respectively, where j = 0, ..., N. Since 

Fig. 1. The beam model  
of a clustered launch 

vehicle 
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the origins of the local coordinate systems lie in the YcZc plane, it is possible 
not to distinguish between the coordinate systems of the beams in the spatial 
argument of the displacement functions, which can be denoted as x. The angle 
of rotation of the sections around the Xj axes is denoted as j (x, t), j = 0, ..., N. 

It is considered that vibrations of one type do not affect the other and are 
described by separate differential equations. The connection of the longitudinal, 
bending and torsional vibrations of the beams will be considered through the 
boundary and blending conditions. We will not take into account the inertia of 
the section during rotation and the Timoshenko shear coefficient for bending 
vibrarions (we will consider the Euler — Bernoulli beam). 

Finite symmetry groups of the spectral problem generated by the clustered 
launch vehicle vibrations. The design features of the clustered rocket in most 
cases lead to the fact that the corresponding mechanical model turns out to be 
symmetrical with respect to turns at angles multiple of the angular distance 
between adjacent side blocks and reflections relative to the planes passing through 
the axis of the core stage and the axis of the boosters as well as axis dividing the 
resulting dihedral angles in half. Such launch vehicles include various 
modifications of the Angara, Soyuz, Delta-IV Heavy, Falcon Heavy, Ariane-5,6, 
CZ-3B, 3C, 5, GSLV, etc. The exception is the Energia launch vehicle and some 
modifications of the Ariane 4, PSLV and similar rockets that have a smaller set of 
symmetries due to differences in the boosters and their location. 

According to Shenflis, such groups of spatial symmetry are denoted as Cnv. 
The symmetry transformations that form them allow rotations of Cn by angles 
that are multiples of 2π / n, and reflections with respect to n planes of symmetry 
located across π / n angular intervals. Further, the transformations of these 
groups will be described in the global coordinate system X0Y0Z0. Rotations are 
understood as active rotations, i.e., the object rotates itself, but the coordinate 
system remains fixed. 

Launch vehicle with four boosters. Let us consider launch vehicle with four 
booters. A corresponding symmetry group is C4v. This group includes eight 
elements: E, C2, C4, 1

4 ,C  Y, Z, 1, 2. Here, σY is the reflection relative to the 
plane X0Y0, Z is the reflection relative to the plane X0Z0, σ1 and 2 are 
reflections relative to the planes rotated π / 4 from σY and Z. The C4v group has 
five irreducible representations (see table below) [15]. 

The table contains the following notation: v denotes Y and Z while d 
denotes 1 and 2. The displacement vector in this case contains 20 components 
and can be written as follows: 
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In order to find orthoprojectors onto one-dimensional representations, we 
use the following equation:  

( ) ( )

4 4

1= ( ) ( ),
( )

R R

Cn n
P g T g

G C
 

and onto lines of 2D representation E 

( )( )

4 4
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Characters of group irreducible representations С4v 

Irreducible 
representations 

Group elements С4v 

Е C2 C4 (2) v (2) d (2) 
1A  1 1 1 1 1 
2A  1 1 1 –1 –1 
1B  1 1 –1 1 –1 
2B  1 1 –1 –1 1 

E  2 –2 0 0 0 
  

Here G(C4v) is the C4v group order; ( )( )R g  are one-dimensional irre-
ducible representations characters; T(g) are C4v group representarion opera-
tors; ( )E

ijT  are diagonal matrix elements of an irreducible representation E. 

The expressions for orthoprojectors on irreducible representations of a C4v 
group are written as follows: 

on one-dimensional irreducible representations  

( ) 11 2 4 4

1 2

1= 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )
8

1 ( ) 1 ( ) 1 ( ) ;

A
Y

Z

P T E T C T C T C T

T T T
 

( ) 11 2 4 4

1 2

1= 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )
8

1 ( ) 1 ( ) 1 ( ) ;

A
Y

Z

P T E T C T C T C T

T T T
 

( ) 12 2 4 4

1 2

1= 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )
8

1 ( ) 1 ( ) 1 ( ) ;

A
Y

Z

P T E T C T C T C T

T T T
 



A.M. Pavlov 

24  ISSN 0236-3941. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2019. № 4  

( ) 11 2 4 4

1 2

1= 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )
8

1 ( ) 1 ( ) 1 ( ) ;

B
Y

Z

P T E T C T C T C T

T T T
 

( ) 12 2 4 4

1 2

1= 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )
8

1 ( ) 1 ( ) 1 ( ) ;

B
Y

Z

P T E T C T C T C T

T T T
  

on the 1st and 2nd lines of an irreducible representation Е  
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Solving the equations ( ) =RP U U for each irreducible representation (lines 
of irreducible representations), we can write the general form of the basis vec-
tors of irreducible representations of the C4v group:  

    

( 1 0

( 2 0

( 1

( 2

) = { , , , , , 0, , , , , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} ;
) = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, , , , , , , , , } ;
) = {0, , , , , 0, , , , , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} ;
) = {0, 0, 0, 0, 0, 0, 0, 0,

t

t

A ts s s s s s s s

A
s s s s s s s s

B
s s s s s s s s

B

U u u u u u v v v v

U w w w w

U u u u u v v v v

U
1( 0
2( 0

0, 0, 0, , , , , 0, , , , } ;
) = {0, , 0, , 0, , , 0, , 0, 0, 0, , 0, , 0, 0, , 0, } ;
) = {0, 0, , 0, , 0, 0, , 0, , , , 0, , 0, 0, , 0, , 0} .

t

t

t

s s s s s s s s

E s s s s s s s s

E s s s s s s s s

w w w w

U u u v v v w w

U u u v v w w w

  (1) 

From expressions (1) it follows that the obtained vectors have a much 
smaller dimension than the dimension of the original space (the dimension 
was decreased from 4 to 10 times). The Fig. 2 schematically shows the modes 
corresponding to the vectors (1). 

The vibration modes corresponding to the vectors ( )1AU  are longitudinal 
vibrations of the launch vehicle, corresponding to the vectors ( )2AU  are tor-
sional vibrations. In the case of vectors ( )1BU  and ( )2BU , the perturbation act-
ing from the side blocks on the central one is compensated, as a result we ob-
tain that 

0 0 0 0= = = 0.u v w  
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Fig. 2. Schematic representation of vibrations modes corresponding to various 
irreducible C4v group representations 
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The vectors ( )1BU  correspond to the longitudinal-bending vibrations of the 
side beams (the so-called barrel-shaped vibrations), the vectors ( )2BU are the 
bending-torsional vibrations of the side beams. Twice multiple frequency 
corresponds to the two-dimensional irreducible representation E. These 
vibrations correspond to the bending vibrations of the launch vehicle in two 
perpendicular planes X0Y0 и X0Z0. 

Vibrations of the launch vehicle in two perpendicular planes X0Y0 и X0Z0. 
For the components of displacement vectors belonging to the irreducible 

representation of E, we can write additional relations based on its matrix 
elements: 

 

1 2( ) ( )
0 0

1 2( ) ( )

1 2( ) ( )

1 2( ) ( )

1 2( ) ( )

= ;

= ;

= ;
;=

= .

E E

E E
s s
E E

s s
E E

s s
E E

s s

v w

u u

v v

w w
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The launch vehicle configuration with four boosters, considered in this 
section, corresponds to the “+  configuration. In practice, the “×  configuration 
takes place as well, and can be obtained by rotating the global coordinate system 
X0Y0Z0 by an angle of  / 4. For this configuration, irreducible representations 
basis vectors can be obtained using this technique after constructiong the 
corresponding representation operators. 

Reduction of vibration modes corresponding to multiple frequencies to 
stabilization planes. Difficulties of an interpretation and further utilization of 
vibration modes corresponding to multiple frequencies arise if natural vibrations 
problem of symmetrical mechanical systems was treated by numerical methods. 
In the case of the considered in this paper clustered launch vehicle with four 
boosters, multiple frequencies correspond to modes which form basis of the 
irreducible representation E. These frequencies have a multiplicity equal to two 
and their eigensubspace spanned on two basic vectors. From Fig. 2, d and e it 
follows that the vibration modes belonging to the lines of the irreducible 
representation E are vibrations, which can be characterized as bending vibrations 
of the vehicle in the planes X0Y0 and X0Z0 which, in turn, coincide with the 
rocket stabilization planes. 

At the same time, in numerical solution, for example, using the iterative 
Lanczos method, if we do not use additional boundary conditions (assumptions), 
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the result of calculating these vibration modes will not be univocal, but will be 
determined by the first approximation specified in the corresponding iterative 
process. As a result, the obtained modes may not correspond to the lines of the 
irreducible representation of E and, therefore, to the rocket stabilization planes. 
From the spectral theory [16], this is explained by the fact that the linear 
combination of the basis vectors of the eigensubspace is also a solution of the 
spectral problem, and belongs to this eigensubspace. Obviously, this should be a 
linear transformation preserving the scalar product, i.e., orthogonal. 

Let us denote the vectors obtained by the numerical calculation as U(1) and 
U(2), and express them through the vectors belonging to the lines of the irre-
ducible representation Е: 

 
1

2

(1) ( )11 12
(2) ( )21 22

.
E

E
U U
U U

 (3) 

To construct the eigenvectors corresponding to the stabilization planes 
and the lines of the irreducible representation E, it suffices to have one vector 
obtained by numerical calculation. Consider a vector 

1 2(1) ( )11 12= .E EU U U  

Alternately acting on the vector U(1) with orthoprojectors 1( )EP  and 2( )EP , 
we can obtain:  

1 1

2 2
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( ) (1) ( )12

= ;

= ,

E E

E E

P U U
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finally  
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12
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E E

E E

U P U
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Coefficients 11  amd 12  can be determined from the equation system 

 
2 2
11 12

(1)
11 0

(1)12 0

= 1;

= ,v
w

 (4) 

where (1)
0v  and (1)

0w  are corresponding components of the vector U(1). 
Decomposition of external perturbation vector into irreducible repre-

sentations of the symmetry group for clustered launch vehicle. Let longitu-
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dinal instability (for example thrust pulsation) occurs in the booster with index 
j = 1. The vector F (t) in this case will contains only one component:  

 ( ) = ( ), ( ), ( ) ;
( ) = {0, ( ), 0, 0, 0} ; ( ) = {0}; ( ) = {0}.t

t
u vw

u vw

F t F t F t F t
F t f t F t F t

 (5) 

To decompose the vector F(t) into irreducible representations of the group 
C4v, we use expressions for orthoprojectors ( ).RP  Further we will consider the 
block Fu (t), since only this block will contain nonzero components. Denoting  
f (t) as f, as a result of projection we get: 

 

1 1

2 2

1 1

2 2

1 1

2 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) = ( ) = 0, / 4, / 4, / 4, / 4 ;
( ) = ( ) = 0 ;

( ) = ( ) = 0, / 4, / 4, / 4, / 4 ;
( ) = ( ) = 0 ;

( ) = ( ) = 0, / 2, 0, / 2, 0 ;

( ) = ( ) = 0 .

t

t

t

A Au u
A Au u

B Bu u
B Bu u

E Eu u
E Eu u

F t P F t f f f f
F t P F t

F t P F t f f f f
F t P F t

F t P F t f f

F t P F t

 (6) 

It can be seen that the sum of all found projections gives the original 
vector ( ).F t  From expressions (6), we can conclude that the considered force 
action excites three types of vibrations: longitudinal vibrations of the vehicle 
(irreducible representation A1), longitudinal-bending vibrations of boosters 
(irreducible representation B1) and bending vibrations of the rocket in the 
X0Y0 plane (1st line of irreducible representation E). 

Conclusion. The symmetry analysis of the natural vibrations problem of 
the beam model of the clustered launch vehicle, considered in this article, led 
to results similar to [5–8]. At the same time, by virtue of its formality and 
mathematical rigor, this approach can be extended to the vibrations problem 
of the clustered launch vehicle with a different number (arbitrary) of boosters. 
The proposed method of reducing the multiple frequencies vibration modes to 
the rocket stabilization planes using simple operations represented by linear 
transformations can be useful in practical calculations. The orthogonal 
projection of the external perturbation vector on the subspaces of irreducible 
representations makes it possible to identify the types of the vehicle vibrations, 
excited by the considered vector.  

Translated by A. Pavlov, K. Zykova 
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