ВОЗБУЖДЕНИЕ ДЕТОНАЦИИ В СНАРЯЖЕНИИ ОБОЛОЧЕЧНЫХ ВЗРЫВНЫХ УСТРОЙСТВ ПРИ ВОЗДЕЙСТВИИ ВЫСОКОСКОРОСТНЫХ УДАРНИКОВ С РАЗНОЙ ФОРМОЙ ГОЛОВНОЙ ЧАСТИ

И.Ф. Кобылкин И.А. Павлова kobylkin_ivan@mail.ru i.a.yakovenko@yandex.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация

Приведены результаты численного моделирования процесса возбуждения детонации в зарядах взрывчатых веществ, ограниченных стальной оболочкой толщиной 5 мм, при воздействии компактных ударников с конической и сферической формами головной части и с плоским торцом. Определены критические скорости инициирования детонации в зарядах взрывчатых веществ с американским составом В и тринитротолуолом при воздействии ударников диаметром 10...16 мм

Ключевые слова

Заряд взрывчатого вещества в оболочке, возбуждение детонации, ударная волна, численное моделирование, кинетика разложения

Поступила в редакцию 28.03.2017 © МГТУ им. Н.Э. Баумана, 2017

Введение. Необходимость исследования процесса возбуждения детонации в снаряжении оболочечных взрывных устройств (ВУ) при воздействии высокоскоростных ударников обусловлена следующими практическими задачами: 1) изучение уязвимости ВУ к прострелу; 2) обеспечение надежности функционирования ВУ; 3) разработка методов дистанционного разминирования (уничтожения) ВУ путем их обстрела высокоскоростными ударниками.

Настоящая статья посвящена решению последней задачи. С помощью численного моделирования исследуется процесс возбуждения детонации в зарядах взрывчатых веществ (ВВ), заключенных в стальные оболочки, при высокоскоростном воздействии компактных цилиндрических ударников (КУ) с различной формой головной части. Цель — определение критической скорости КУ, при превышении которой в зарядах ВВ возбуждается детонация.

Необходимо отметить, что установлению механизмов и критериев возбуждения взрывных превращений в оболочечных ВУ при воздействии высокоскоростных КУ посвящена обширная литература, обзор которой дан в книге [1]. Там же приведен обобщенный энергетический критерий возбуждения детонации при интенсивном локализованном воздействии КУ, разработанный И.Ф. Кобылкиным. Этот критерий при воздействии КУ по нормали к поверхности ВУ имеет следующий вид:

$$G \ge G_{Kp} \left(1 + m \frac{\delta_1}{d} \right)^2 \left(1 + \kappa \right)^2 \left(\frac{Z_{06} + Z_{KY}}{Z_{KY}} \right)^2 \left(\frac{Z_{06} + Z_{BB}}{2Z_{06}} \right)^2, \tag{1}$$

где $G=v^2d$ — энергетический параметр, определяющий инициирующую способность КУ диаметром d и движущегося со скоростью v; $G_{\rm kp}$ — критическое значение энергетического параметра, необходимое для инициирования детонации в открытом заряде ВВ; m — коэффициент, учитывающий экранирование заряда ВВ оболочкой; δ_1 — толщина передней стенки оболочки; κ — коэффициент, учитывающий влияние формы головной части ударника; $Z_{\rm o6}$, $Z_{\rm Ky}$, $Z_{\rm BB}$ — импедансы материалов оболочки, КУ и ВВ соответственно. Из энергетического критерия (1) следует известная эмпирическая формула Джакобса — Русланда для критической скорости ударника $v_{\rm kp}$ [2].

Энергетический критерий (1) качественно правильно отражает известные экспериментальные данные при воздействии высокоскоростных КУ с плоскими торцами на открытые заряды ВВ, когда $\delta_1=0$, $\kappa=0$. При воздействии ударников с полусферической головной частью в [2] рекомендуют принимать $\kappa=1$. Если воздействие осуществляется на экранированные заряды ВВ, то значение коэффициента m обычно принимается равным отношению плотностей материалов экранирующей оболочки и КУ. Такие значения коэффициентов κ и m не позволяют достичь удовлетворительного согласия с экспериментальными и расчетными значениями критических скоростей инициирования детонации, что препятствует использованию энергетического критерия (1) в инженерной практике при предварительном проектировочном анализе инициирующей способности КУ. Поэтому одна из задач численного моделирования состояла в расчете значений $\nu_{\kappa p}$ при различных конструкциях КУ и условиях их взаимодействия с оболочечными ВУ для последующего подбора подходящих значений коэффициентов κ и m.

Постановка задачи. Для исследования выбрана обобщенная модель оболочечного ВУ, приведенная на рис. 1. Толщина стенок оболочки принималась

равной 5 мм, материал оболочки — среднеуглеродистая сталь. В качестве снаряжения использовались два наиболее распространенных литьевых взрывчатых состава: ТГ 40/60 — сплав ТНТ (40 %) и гексогена (60 %); ТНТ — тринитротолуол. Сплав ТГ 40/60 по рецептуре совпадает с американским составом В [3], поэтому далее между этими взрывчатыми составами не делается различия и обозначаются они как сост. В.

Расчетная модель содержит четыре основных элемента: цилиндрический КУ, ВВ, оболочку и окружающий воздух. Материал ударника — среднеуглеродистая сталь. Изучалось высокоскорост-

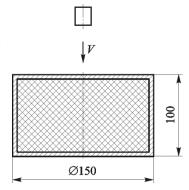


Рис. 1. Постановка задачи

ное ударное воздействие на ВУ КУ диаметром 10, 12, 14 и 16 мм со следующими формами головной части: плоским торцом, сферической и конической (рис. 2).

Таблица 1

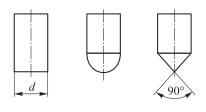


Рис. 2. Конструкция ударников

УРС в форме JWL [5]:

Численное моделирование было выполнено в программе LS-DYNA методом ALE-2D. Материал ударника — сталь 30 с уравнениями состояния (УРС) Ми — Грюнайзена и Джонсона — Кука [4]. Эти УРС интегрированы в комплекс программ ANSYS.

В качестве уравнения состояния как для ВВ, так и для продуктов детонации использовалось

 $p(v,e) = A \left(1 - \frac{\Gamma}{R_1 \frac{v}{v_0}}\right) \exp\left(-R_1 \frac{v}{v_0}\right) + B \left(1 - \frac{\Gamma}{R_2 \frac{v}{v_0}}\right) \exp\left(-R_2 \frac{v}{v_0}\right) + \frac{\Gamma e}{v},$

где p, v, e, v_0 — давление, удельный объем, полная энергия и начальный удельный объем в расчетной ячейке соответственно; Γ — коэффициент Грюнайзена; A, B, R_1 , R_2 — коэффициенты, приведенные в табл. 1, взяты из работы [3].

Коэффициенты уравнения JWL для сост. В и ТНТ

Заряд взрывчатого	Коэффициенты					
вещества	А, ГПа	В, ГПа	R_1	R_2	Γ	
Сост. В	77 810	-5,031	11,3	1,13	0,8938	
Продукты детонации сост. В	524,2	7,68	4,2	1,1	0,5	
THT	1798	-93,1	6,2	3,1	0,8926	
Продукты детонации ТНТ	371,2	3,231	4,15	0,95	0,3	

Для описания кинетики разложения BB в ударных волнах использовалась модель Ли — Тарвера, в соответствии с которой скорость разложения BB описывается уравнением

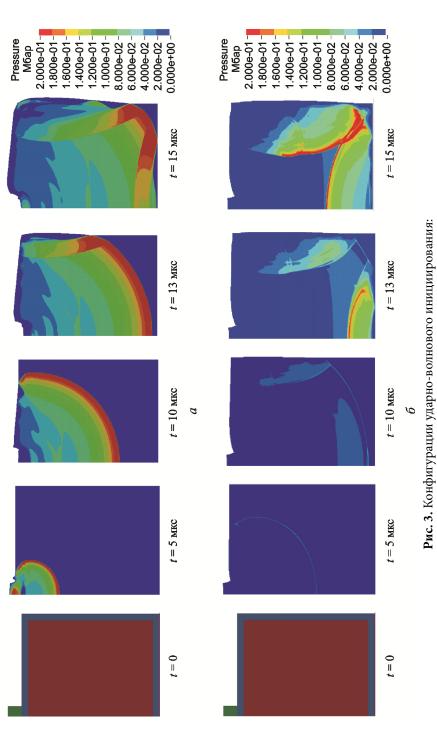
$$\frac{d\lambda}{dt} = \begin{cases} I(1-\lambda)^b \left(\frac{\rho}{\rho_0} - 1 - a\right)^x, & \text{если} \quad \frac{\rho}{\rho_0} > a + 1 \text{ и } \lambda < \lambda_{ig \text{ max}}; \\ G_1(1-\lambda)^c \lambda^d p^y, & \text{если} \quad \lambda < \lambda_{G1\text{max}}; \\ G_2(1-\lambda)^e \lambda^g p^z, & \text{если} \quad \lambda > \lambda_{G2\text{min}}, \end{cases}$$

где λ — массовая доля ВВ; ρ , ρ_0 — текущая и начальная плотности расчетной ячейки; I, b, a, x, $\lambda_{ig\, max}$, G_1 , c, d, y, λ_{G1max} , G_2 , e, g, z, λ_{G2min} — коэффициенты кинетической модели, приведенные в табл. 2 для сост. В и ТНТ [6–8]; p — давление в расчетной ячейке.

 Таблица 2

 Коэффициенты кинетики Ли — Тарвера для сост. В и ТНТ

Параметр	Значения коэффициентов модели			
параметр	для сост. В	для ТНТ		
I, 1 / мкс	4·10 ⁶	8 · 108		
b	0,667	0,667		
а	0,0367	0,065		
х	7,0	6,0		
λ_{igmax}	0,022	0,015		
G_1 , Мбар ^{-y} · мкс ⁻¹	140	11,2		
С	0,222	0,667		
d	0,333	0,667		
y	2,0	1,0		
$\lambda_{G1 ext{max}}$	0,7	1,0		
G_2 , Мбар $^{-z}$ · мкс $^{-1}$	1000	820		
e	0,222	0,333		
g	1,0	0,333		
z	3,0	3,0		
$\lambda_{G2\min}$	0,0	0,0		


Для определения критической скорости инициирования детонации в процессе численного моделирования для каждой конструкции ударника его скорость в переходной области изменялась с шагом 100 м/с. Моделировалось воздействие ударника по нормали к поверхности ВУ.

Результаты расчетов. Выявлены две конфигурации ударно-волнового инициирования ВВ: инициирование детонации в первой ударной волне, образующейся в заряде ВВ при высокоскоростном воздействии КУ, и инициирование детонации в отраженных УВ или при взаимодействии двух и более отраженных от стенок оболочки ударных волн. На рис. 3 приведены распределения давления в разные моменты времени для указанных конфигураций инициирования.

Известно, что если первая ударная волна не инициирует детонацию, то она уменьшает чувствительность заряда ВВ к последующему ударно-волновому нагружению. В этом заключается явление ударно-волновой десенсибилизации зарядов ВВ [1]. Поскольку кинетика Ли — Тарвера не учитывает явление десенсибилизации ВВ, то в настоящей работе рассматривались только случаи инициирования в первой ударной волне.

За критическую скорость ударника принималось среднее значение между максимальной скоростью, при которой детонация в первой ударной волне не инициируется, и минимальной, при которой детонация инициируется.

Определенные в результате расчетов критические скорости КУ ($\nu_{\rm kp}$) приведены в табл. 3.

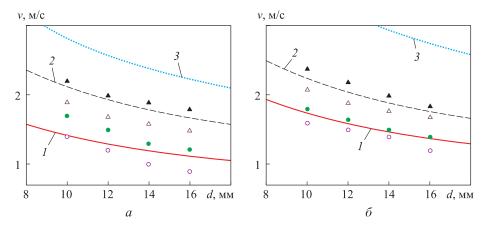
a- детонация в первой ударной волне, $v_{\mathrm{Ky}}=1100$ м/с, d=16 мм; $\theta-$ детонация в отраженных ударных волнах, $v_{\mathrm{Ky}}=900$ м/с, d=16 мм

2250

2300

Таблица 3

конус (90°)


Заряд взрывчатого вещества	Компактный цилиндрический ударник					
	Диаметр d , мм				Форма головной части	
	10	12	14	16	Форма головной части	
Сост. В	1400	1300	1200	1100	плоский торец	
	2300	2200	1900	1700	полусфера	
	2200	2100	2000	1800	конус (90°)	
ТНТ	1750	1600	1500	1400	плоский торец	
	2400	2300	2000	1800	полусфера	

Значения критических скоростей (м/с) КУ для сост. В и ТНТ

Проблемой численного моделирования является верификация численной модели — согласие получаемых расчетных результатов с известными экспериментальными данными. В нашем случае такими экспериментальными данными являются критические скорости возбуждения детонации в открытых зарядах ТНТ и сост. В ударниками с плоскими торцами [2]. Полученные в результате численного моделирования значения критических скоростей для ударников с плоскими торцами удовлетворительно согласуются с экспериментальными значениями из [2]. Максимальное различие расчетных и экспериментальных значений $v_{\rm kp}$ не превышает 8 %. Данное обстоятельство позволяет использовать разработанную методику численного моделирования для расчета критических скоростей инициирования детонации экранированных зарядов ВВ ударниками с другими формами головных частей.

В результате численных расчетов определено, что ударники со сферической головной частью имеют меньшую инициирующую способность, чем ударники с плоским торцом (см. табл. 3), что соответствует известным экспериментальным данным [2]. Расчет $v_{\kappa p}$ для КУ с полусферической головной частью с помощью энергетического критерия с рекомендованным значением коэффициента формы головной части $\kappa=1$ дает двукратное увеличение $v_{\kappa p}$ по сравнению с $v_{\kappa p}$ для ударников с плоским торцом, что не согласуется с результатами численного моделирования. Удовлетворительное согласие достигается при $\kappa=0,45...0,5$ (рис. 4). Такое значение коэффициента формы головной части КУ позволяет использовать критерий (1) для анализа инициирующей способности КУ с полусферической головной частью. Важность этого вывода состоит в том, что при практической реализации методов дистанционного разминирования (уничтожения) ВУ путем их обстрела высокоскоростными ударниками целесообразно использовать ударники именно с полусферической головной частью, поскольку для них в меньшей степени выражена зависимость $v_{\kappa p}$ от угла воздействия КУ на ВУ.

Ударники с конической головной частью имеют лучшую проникающую способность по сравнению с ударниками с полусферической головной частью.

Рис. 4. Сопоставление результатов расчетов по энергетическому критерию ($1-\mathrm{KY}$ с плоским торцом; $2-\mathrm{KY}$ со сферической головной частью, $\kappa=0,5$; $3-\mathrm{KY}$ со сферической головной частью, $\kappa=1$) и численного моделирования (\blacktriangle , \bullet — детонация; \vartriangle , \bigcirc — отсутствие реакции):

a — для заряда сост. В; δ — для заряда ТНТ

При пробитии оболочки ВУ они будут терять меньше скорости и, следовательно, достигать заряд ВВ с большей скоростью. Поэтому представляет практический интерес исследование инициирующей способности КУ с конической головной частью при воздействии на оболочечные ВУ.

Как показали расчеты, КУ с конической головной частью с углом при вершине менее 90° обладают меньшей инициирующей способностью по сравнению с КУ с полусферической головной частью. Возбуждение детонации при их воздействии происходит в основном при скоростях больше 2000 м/с. Для выяснения причин пониженной инициирующей способности КУ с острой конической головной частью выполнено численное моделирование ударно-волнового возбуждения детонации в заряде из сост. В при воздействии ударников с коническом торцом, углами при вершине 45 и 90° и скоростями 2200 и 2000 м/с. Рассмотрены случаи взаимодействия ударников с зарядами ВВ без оболочки и в стальной оболочке толщиной 5 мм.

Распределение давления в заряде из сост. В в различные моменты времени при воздействии КУ с конической головной частью с углом при вершине 45° при $v_{\rm KY}=2200$ м/с приведено на рис. 5. Анализ начальной стадии нагружения заряда ВВ показывает, что при воздействии конического ударника на ВУ заряд ВВ первоначально нагружается волной сжатия, во фронте которой в отличие от ударно-волнового сжатия давление возрастает постепенно, что препятствует быстрому ударно-волновому инициированию детонации. Как следует из рис. 5, детонация в заряде ВВ не возникает.

Оценить давление $p_{\rm BB}$, возникающее в заряде ВВ при проникании КУ с конической головной частью, можно, полагая процесс проникания установившимся. Тогда

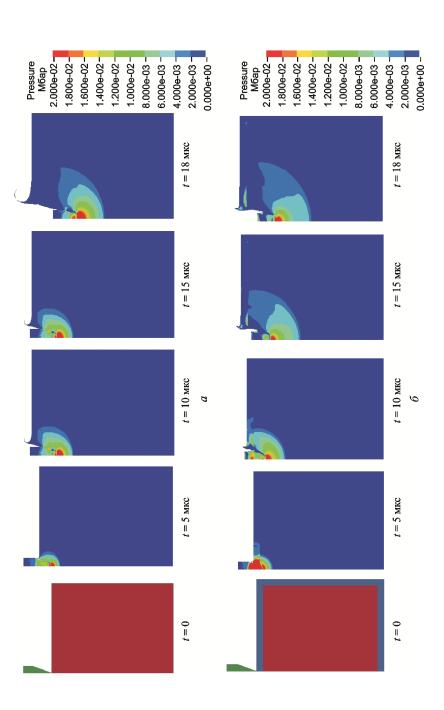


Рис. 5. Распределение давления в заряде ВВ (сост. В) в разные моменты времени при воздействии КУ с конической головной частью $(\alpha = 45^{\circ}, \ \nu_{\rm Ky} = 2200 \ {\rm M/c})$:

a- заряд ВВ в стальной оболочке толщиной 5 мм; 6- заряд ВВ без оболочки

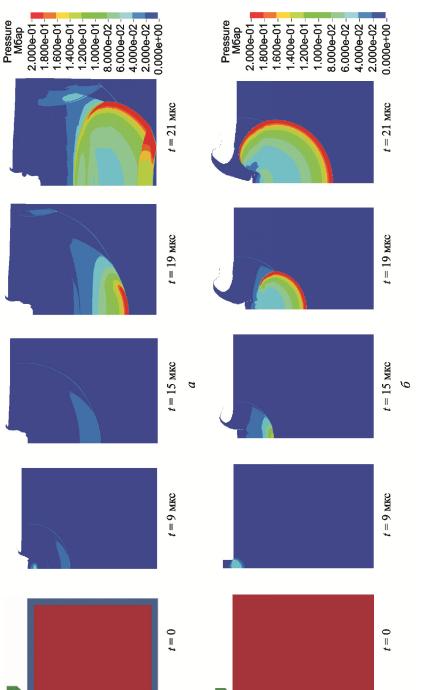


Рис. 6. Распределение полей давления в заряде ВВ (сост. В) при воздействии КУ с конической головной частью $(\alpha = 90^{\circ}, \ \nu_{\rm Ky} = 2000 \ {\rm m/c}; \ a, \ b - {\rm cm. \ pnc.} \ 5)$

$$p_{\rm BB} = \rho v^2 \sin^2 \frac{\alpha}{2},$$

где ρ — плотность заряда ВВ; α — угол раствора конуса. В соответствии с этой формулой давление нагружения заряда ВВ тем выше, чем больше угол при вершине конуса. Поэтому ударник с большим углом при вершине имеет большую инициирующую способность. На рис. 6 показано распределение давления в заряде ВВ (сост. В) в разные моменты времени при воздействии КУ с конической головной частью (α = 90°) с меньшей скоростью $\nu_{\rm KY}$ = 2000 м/с. При этом возбуждение детонации в заряде с оболочкой происходит со значительной задержкой (~19 мкс) на достаточно большой глубине.

Выводы. 1. С использованием программы LS-Dyna разработана и верифицирована методика численного моделирования процесса возбуждения детонации в оболочечных ВУ при воздействии высокоскоростных КУ с разными формами головных частей.

- 2. Определены критические скорости инициирования детонации стальными КУ диаметром 10...16 мм с плоскими и полусферическими головными частями в зарядах ВВ из сост. В и ТНТ, ограниченных стальными оболочками толщиной 5 мм. Подобраны коэффициенты формы для энергетического критерия инициирования детонации.
- 3. Пониженная инициирующая способность ударников с острыми коническими головными частями (угол раствора конуса меньше 90°) объясняется тем, что нагружение заряда ВВ при их воздействии осуществляется волнами сжатия с плавным нарастанием давления во фронте волны.

ЛИТЕРАТУРА

- 1. *Кобылкин И.*Ф., *Селиванов В.В.* Возбуждение и распространение взрывных превращений в зарядах взрывчатых веществ. М.: Изд-во МГТУ им. Н.Э. Баумана, 2015. 354 с.
- 2. Bahl K.L., Vantine H.C., Weingart R.C. The shock initiation of bare and covered explosive by projectile impact // The 7th Symp. (Intern.) on Detonation. Annapolis (Maryland, USA), 1981. P. 858–863.
- 3. *Dobratz B.M.*, *Crawford P.C.* Properties of chemical explosives and explosive simulants. LLNL, University of California, Livermore, 1985.
- 4. $Autodyn^{TM}$. Interactive non-linear analysis software. Theory manual. Century Dynamics Inc., 1998. 244 p.
- 5. Орленко Л.П., ред. Физика взрыва. В 2 т. Т. 1. М.: Физматлит, 2004. 832 с.
- 6. Орленко Л.П., ред. Физика взрыва. В 2 т. Т. 2. М.: Физматлит, 2004. 656 с.
- 7. *Lee E.L., Tarver C.M.* Phenomenological model of shock initiation in heterogeneous explosives // Phys. Fluids. 1980. Vol. 23. No. 12. P. 2362–2372. DOI: 10.1063/1.862940 URL: http://aip.scitation.org/doi/abs/10.1063/1.862940
- 8. *Shock* initiation experiments and modeling of composition B and C-4 / P.A. Urtiew, K.S. Vandersall, C.M. Tarver, G. Frank, J.W. Forbes // 13th International Detonation Symposium. Norfolk, VA, United States July 23–28, 2006.

Кобылкин Иван Федорович — д-р техн. наук, профессор кафедры «Высокоточные летательные аппараты» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Павлова Ирина Александровна — аспирантка кафедры «Высокоточные летательные аппараты» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Кобылкин И.Ф., Павлова И.А. Возбуждение детонации в снаряжении оболочечных взрывных устройств при воздействии высокоскоростных ударников с разной формой головной части // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2017. № 3. С. 54–65. DOI: 10.18698/0236-3941-2017-3-54-65

SHOCK INITIATION OF CASED EXPLOSIVES BY A HIGH-SPEED STRIKER WITH WARHEAD OF DIFFERENT FORMS

I.F. Kobylkin I.A. Pavlova kobylkin_ivan@mail.ru i.a.yakovenko@yandex.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract

The article describes the results of numerical simulation of shock initiation process in the 5 mm-thick steel shell-cased explosive charges when compact strikers affect spherical and conical warheads and the flat face. We identified the critical velocity of shock initiation for charges with composition B and TNT under the impact of 10...16 mm-diameter strikers

Keywords

Cased explosive charge, shock initiation, shock wave, numerical simulation, decomposition kinetics

REFERENCES

- [1] Kobylkin I.F., Selivanov V.V. Vozbuzhdenie i rasprostranenie vzryvnykh prevrashcheniy v zaryadakh vzryvchatykh veshchestv [Explosive transformation incitation and propagation in explosive charges]. Moscow, Bauman MSTU Publ., 2015. 354 p.
- [2] Bahl K.L., Vantine H.C., Weingart R.C. The shock initiation of bare and covered explosive by projectile impact. *The 7th Symp. (Intern.) on Detonation*, Annapolis (Maryland, USA), 1981, pp. 858–863.
- [3] Dobratz B.M., Crawford P.C. Properties of chemical explosives and explosive simulants. LLNL, University of California, Livermore, 1985.
- [4] Autodyn $^{\text{TM}}$. Interactive non-linear analysis software. Theory manual. Century Dynamics Inc., 1998. 244 p.
- [5] Orlenko L.P., ed. Fizika vzryva. T. 1 [Physics of explosions. Vol. 1]. Moscow, Fizmatlit Publ., 2004. 832 p.
- [6] Orlenko L.P., ed. Fizika vzryva. T. 2 [Physics of explosions. Vol. 2]. Moscow, Fizmatlit Publ., 2004. 656 p.

- [7] Lee E.L., Tarver C.M. Phenomenological model of shock initiation in heterogeneous explosives. *Phys. Fluids*, 1980, vol. 23, no. 12, pp. 2362–2372. DOI: 10.1063/1.862940 Available at: http://aip.scitation.org/doi/abs/10.1063/1.862940
- [8] Urtiew P.A., Vandersall K.S., Tarver C.M., Frank G., Forbes J.W. Shock initiation experiments and modeling of composition B and C-4. *13th International Detonation Symposium*, Norfolk, VA, United States July 23–28, 2006.

Kobylkin I.F. — Dr. Sc. (Eng.), Professor of High Precision Aircraft Department, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Pavlova I.A. — post-graduate student of High Precision Aircraft Department, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Kobylkin I.F., Pavlova I.A. Shock Initiation of Cased Explosives by a High-Speed Striker with Warhead of Different Forms. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2017, no. 3, pp. 54–65. DOI: 10.18698/0236-3941-2017-3-54-65

В Издательстве МГТУ им. Н.Э. Баумана вышло в свет учебное пособие авторов

Е.А. Власовой, В.С. Зарубина, Г.Н. Кувыркина

«Математические модели процессов теплопроводности»

Изложены сведения, составляющие содержание раздела «Математические модели тепловых систем» курса «Математические модели технических систем». Приведены примеры решения задач, а также контрольные вопросы и задачи для самостоятельной работы студентов. Часть задач может служить основой для проведения студентами самостоятельной научно-исследовательской работы.

По вопросам приобретения обращайтесь:

105005, Москва, 2-я Бауманская ул., д. 5, стр. 1 +7 (499) 263-60-45 press@bmstu.ru www.baumanpress.ru