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Abstract Keywords

New elements are usually used in developing promising Dynamics, model, calculation,
products, and they are introduced to improve its charac-  oscillations, vibrations, bench,
teristics. This study objective is aimed at making certain  gear box

decisions to eliminate or reduce negative effects of de-

sign and technological solutions that are being identified

only at the bench testing stage. Problem of resonant

interactions between bench elements and main gear box

units is connected to significant distortion of the prod-

uct under development dynamic analysis results. There-

fore, identifying resonant interaction conditions and

obtaining reliable results in the course of developing any

kind of units is relevant for the aviation industry enter-

prises. JSC “Reduktor-PM” created a universal bench,

and it was involved in solving this task practically for the

first time, since significant oscillation levels were regis-

tered significantly exceeding the calculated values in the

process of testing the bench. To determine the bench

element base frequencies, the modal analysis task was

finalized to identifying natural frequencies of the bench

structural elements and partial frequencies of these

elements at installing the unit on the bench. Wave trans-

formation pattern in complex structures significantly

depends on the element base and the structural connec-

tion between its components. In fact, the wave field

structure is n-dimensional. Nevertheless, general ap-

proaches to generating interaction conditions are possi-

ble on the basis of their expansion in coordinates.

In this case, the algorithm for determining oscillation Received 09.09.2019
natural frequencies in the bench elements and in the Accepted 23.09.2019
structure as a whole is based on the modal analysis © Author(s), 2020
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Introduction. Any mechanical transmission, including the test bench techno-
logical transmission, is a combination of many rotors with gears in bearing
supports enclosed in load carrying structure casing. Existing methods in building
mathematical models do not fully meet the requirements of solving the problem
of simulating such systems in general and are rather appropriate in simulating
separate elements that are not connected between each other. From the point of
view of mathematical model, mechanical transmissions and mechanically closed
benches for their testing are a combination of the complex geometry elements
that are structurally interconnected. These connections have elastic and damping
properties. Structural elements themselves are systems with distributed
parameters. Works [1-7] are devoted to dynamic processes in gearing, works
[8-10] — to planetary gear dynamics and works [11, 12] — to resilient
connecting socket dynamics. Based on the most recent works devoted to
transmissions dynamics, the problem of designing a dry friction damper for an
aircraft engine gear box bevel gearwheel was considered [13]. The work was
carried out in order to reduce the amplitude of wheel diaphragm vibration
stresses to prevent its fatigue destruction. It should be noted that the literature
review demonstrated insufficient level of scrutiny in the transmission dynamics
problem and practically complete absence of works on benches for testing them.

Mechanically closed bench together with a gearbox under testing presents
a closed transmission circuit. Structure of the scheme includes transmission
shafts, gear wheel boxes, bearing supports, elastic couplings, housing units and
load-bearing structure. This article is devoted to the problem of creating
mathematical model of a similar complex system and its testing at the level of
simplest test tasks having the analytical solution.

Analytical problem statement in regard to coupled system forced
oscillations. When constructing a mathematical model of reducer — bench
system, as well as of any transmission, at least two approaches are possible, i.e.,
using continuous systems with distributed parameters and discretization
accompanied by building a system with multitude degrees of freedom. This
article is devoted to construction of a model based on typical primitives with
distributed parameters.

General structure of the distributed system oscillations equation has the
following form:

Aaz—Y+Ba—Y+CY=f. (1)
ot ot

Following notations are introduced in relation (1): Y (x, y, z, t) is the sought-
for displacement function, generally spatial; C is stiffness operator; A is inertia
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operator; B is damping operator; f (x, y, z, ) is external force impact on the
system.

Equation (1) describes dynamic behavior of a separate structural element;
however, the structure functioning as a whole involves interaction of elements
with each other.

Complex structure could be represented as a system of separate elements;
in this case, the main research problem appears in formulating conditions
of communication between elements in the form of mathematical dependencies.

Mathematically elastic dependence between the i and j structural elements
could be assumed as the transfer function:

Kijk 8 (bij) (Yjm(bjir ) A (m, k) = Yig(by, 1)), (2)

where Kjjx is the force transfer coefficient (coupling rigidity); &(b;) is the
n-dimensional unit pulse Dirac function; b;;, bj; are the radius vectors of inter-
face points on the i and j elements; Yj (Yjy,) is the i(j) element motion in the
k (m) direction (k (m) is the degree of freedom index); Ajj(m, k) is the coordi-

nate transformation matrix, which determines spatial orientation of the ele-
ments coordinate local systems.
Similarly, the damping transfer function could be determined as follows:

0Yjx
ot

T(bﬁ» t) Ajj(m, k) —

Djj 8(517)( (by» t)) , (3)
where Djj is the coupling damping coefficient.
Based on equations (1)-(3), the structure under study general system
of dynamics equations could be formulated
0*Yi OYix
2 Bix el CikYik =
=% Kigd (0y) (Yjm (bjis 1) Ay (m, k) = Yig (b, 1)) +
jm

Ajk

oY,
+ > Dijxd (bij)(a—;(b]’i» t) Ajj (m, k) —
jm

ZL by, t)) Fhe @
Equation (4) appears to be a system of differential equations in partial
derivatives.
In the general case, solution of such a problem is difficult and requires high
degree of discretization, for example, using FEM with algebraic equation systems
of ultrahigh dimension. However, system (4) could be reduced to a system of
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ordinary differential equations applying the so-called generalized (main)
coordinate method, and the displacement functions could be represented as:

Yik = 2 Vikr ) Uik (5)
r=1
where Vi, (t) are the modal motion functions; Uy, are the eigenmodes (modes)
of i-th component oscillations in the k direction determined in the absence
of dissipation; 7 (s) is the oscillation form sequence number.

Equation (5) and the text further accept the following system of indexing the
expression term: i (j) first index is the structure under study element number; k
(m) second index is the degree of freedom number in the element local
coordinate system; r(s) third index is the modal coordinate number of the
element given degree of freedom.

Based on (5) and taking into account the oscillation eigenmodes
orthogonality property, and using the Bubnov — Galerkin method, equation (1)
could be approximately represented as the r < R system of ordinary differential
equations of the following form:

Vi) | o, dVir(0)

dt2 ikr

+ (Dizkrvikr(t) = Exr, (6)

where dy, are the damping coefficients of corresponding oscillation modes;
o are the intrinsic cyclic frequencies of the i-th component oscillation in the

k-direction determined in the absence of dissipation; Fj, = | fkUirdV

ikr v

is the generalized force; M, = [ pijU,2dV is the generalized mass; p; is the
1%

material density.
Applying representation (6) to the system of equations (4), final form of the
dynamics equation system for the structure under study could be obtained:

AV, (t
;;( ) 02 Vi (1) =

2y,

Uikr (b3j)

ikr

R R
= > Kijk [ Y Vims(O)U jms(bji) Aij (m, k) = 3 Vikr(t)Uikr(bij)j +
jm r=1

s=1

R AV, (t
U js(bi) Ay (m, k) L”Uikr(bij)j + Fy.

2

Uikr(bij) | & dVjms(t)
o1 dt

+ Z Dijk
jm ikr —1odt

(7)
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Equation (7) is a system of ordinary differential equations in regard to
partial modal coordinates of the structure elements under study; solutions to
this equation are the modal motion functions of the structure elements.

Solution to system (7) should be sought in the trigonometric Fourier series
form

Vikr (1) = %0 + 3 (aycos (2mvt) + by sin (2mvt)), (8)
v=1

where aq, a, and b, are the calculated coefficients at harmonics; v is the harmonic
carrier frequency (o = 2mv).

When substituting (8) in (7), the system of differential equations could be
represented as a sequence of systems of linear algebraic equations (SLAE)
in regard to the ay,a, and b, coefficients. Harmonic frequencies number and
carriers in solving system (7) are actually determined by the Fy, external
generalized force harmonics composition, which could be represented in the
form of Fourier series, similarly to (8). Free term present with the a, coefficient
demonstrates possibility of accounting the static loading in solving the dynamic
problems.

Physical boundary and initial conditions. Boundary conditions considera-
tion in the system of equations (7) is quite simple; structure elements fixing con-
ditions should be accounted even at the stage of determining their modal coordi-
nates. Degree of freedom restrictions would be provided for only those elements
that are connected to the structures, possess high rigidity, and which displace-
ments are negligible. For example, these could be parts of the basement, where
the test bench is located. Modal coordinates of structure elements conjugated
with its other parts should be calculated with free boundary conditions that pro-
vide arbitrarily significant displacement along any of the degrees of freedom.

Initial conditions are determined by the partial initial phases of external har-
monic effect. Thus, solution is a superposition of solutions for each external har-
monic with its carrier frequency and phase that determines the initial conditions.

Dynamic system element base structure of the object under study.
Differential equations of all elements of the structure under study, one way or
another, could be represented in the form (1). Mathematical model developed
has no restrictions in terms of using elastic models as an element base, since it is
based on modal coordinates of the structure elements. However, calculating
the natural oscillation modes of the complex shape fully three-dimensional
objects is time-consuming from the point of view of software implementation
or requires the use of third-party software based on the finite elements’ method.
As an example of the element base, beam and plate elastic models are provided.
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Elastic beam model is most preferable for shafts and connecting springs.
Both the Euler — Bernoulli model and the Timoshenko model could be used.
In this work, the Timoshenko beam model [14] was applied, since the gear
shafts often are having the length to diameter ratio of less than ten. Timoshenko
model, in contrast to the Euler — Bernoulli model, takes into account shear
strain and inertia of section rotation. This makes it possible to obtain a more
accurate result for beams of any dimension. Similar mathematical model
is preferable for beam elements of the bench supporting structure.

The beam could experience bending in two planes, i.e., tensile and torsion.
In this case, modal coordinates of shafts, springs and beam supporting elements
are determined by four independent dynamics equations.

Tension and torsion modal coordinates [15-18] (no. 1 and no. 2):

oy 0 8y}

D EaZ =0 9
ué’tz Bx{ Ox ©)
-0 0 o0
— -\ GJ,—|=0, 10
e 8x[ ]"ax} (10

where p(x) is the beam linear mass; y(x) is the beam tension; E is the material
rigidity module (Young); A(x) is the cross-section area; J(x) is the beam linear
moment of inertia; 0(x) is the beam twist angle; G is the material shear module;
Jp(x) is the section equatorial moment of inertia.

Modal bending coordinates in two planes [14] (no. 3 and no. 4):

2
pAQ = i[kAG(% - (P)}

2
6’2t Ox Ox (11)
*¢ 0 8@) (814 )

P gL s kacl Lo,

Pl on 6x( ) o w7

where p is the material density; A(x) is the cross-section area; u(x) is the beam
deflection; k is the Timoshenko shear coefficient; G is the material shear
module; ¢(x) is the section tilt angle; J(x) is the section moment of inertia;
E is the material rigidity module.

Gear disks are elements with two dominant sizes; therefore, a model of an
elastic round plate based on the Kirchhoff — Love hypotheses in combination
with the plate longitudinal deformation in the median plane would be a logical
mathematical model for their description. Assembly casings in a first approxi-
mation could also be considered as a set of interconnected plates and shells.
A plate may experience lateral bending and tension in the median plane. Thus,

ISSN 0236-3941. Bectunk MI'TY um. H.3. baymana. Cep. MammHocTpoenne. 2020. Ne 3 23



V.V. Pshenichnyy, A.F. Salnikov

discs and casing walls modal coordinates are determined by two independent
dynamics equations.
Transverse bending modal coordinates [15-18] (no. 1):

(84u 0*u 8414) 0%u

+ + h—=0, 12
ot oxtoy? oyt ) P 12)

where D= ERW?/12 (1 —y?) is the cylindrical rigidity (E is the material rigidity
module; y is the material Poisson’s ratio); u is the plate deflection; p is the

material density; 4 is the plate thickness.
Longitudinal oscillations modal coordinates (no. 2):

otu 1 ou 1 o%v (1-v%) d%u
St s s T

ox* 2 oy 2 Ox0y E ot (13)
1(1_ )8_21’+8_2V+1(1+ ) A Gk

2 ! ox? oyt 2 ! 0x0y P E o’

where u(x, y) are the displacements along the x-axis; v(x, y) are the
displacements along the y-axis; p is the material density; y is the material
Poisson’s ratio; E is the material rigidity module.

Bearing supports and elastic couplings are characterized primarily by their
rigidity and damping properties, their inertial component could be considered
as an absolutely solid body.

Test problems. Timoshenko beam elastic model is considered in this article
as an element base in the test problems. To implement the mathematical model,
MATLAB mathematically oriented programming language was used.

The problem of free oscillations for a composite round beam on two hinged
supports was solved as the first test problem in order to verify the mathematical
apparatus functioning and its implementation algorithm (Fig. 1). The beam was
assembled of five segments having the same length of 0.2 m, the beam total
length was 1 m; segment diameter 25 mm; material properties (steel, rigidity

module 2-10"" Pa; density 7,850 kg/m?).

= D

A7 7

Fig. 1. Test modal problem calculation scheme

Composite beam calculation results should correspond to the solid structure
of similar size and shape. Analytical solution of the modal problem for this
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calculation scheme is well known [15, p. 260]. Natural frequencies are deter-
mined by the following formula

i2m? EJ

pil_zu’

where p; is the frequency with serial number i [ is the beam length; E is the
rigidity module; J is the section moment of inertia; p is the section specific
gravity.

Table 1 presents comparative results of solving the modal problem.

(14)

Table 1
Comparative results of solving the modal problem
Serial number ) ) )
. Mathematical model Analytic calculation Error, %
frequency i
1 49.3205/49.3205 Hz 49.5542 Hz 0.5
2 197.3634/197.3634 Hz 198.2166 Hz 0.4
3 442.7554/442.7549 Hz 4459874 Hz 0.7
4 788.2172/788.2174 Hz 792.8665 Hz 0.6

Results presented in Table 1 demonstrate the first eight pair of segmented
model’s bending eigenfrequencies in two planes; calculation error relative to the
analytical calculation of bending frequencies is less than 1 %. The result was
obtained using 14 modal coordinates for the degree of freedom.

As the second test problem, let us consider oscillations of a similar
composite round beam on two hinged supports loaded with induced harmonic
force. Design scheme is presented in Fig. 2.

707 7

Fig. 2. Forced oscillations test problem design scheme

The beam is loaded with the P(t)= D coswt harmonic force. Analytical
solution to the beam deflection problem at its center is known [16, p. 166],
deflection amplitude value is determined by the following formulas:

I PP 1
—|= —(tgh — thir); 15
u(z) 32E]x3(g ) (15)
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X=%\4/umzl4/(E]). (16)

Here P, is the force amplitude; [ is the beam length; E is the rigidity module;
J is the section moment of inertia; p is the section specific gravity; o is the force
angular frequency.

Table 2 shows results of the displacement calculation in the plane of the

Py = 1000 N force applied at various carrier frequencies. The result was
obtained using 14 modal coordinates for the degree of freedom.

Table 2

Comparative results of solving the dynamic problem

Frequency, Hz | Mathematical model | Analytic calculation | Error, %
20 0.0065 m 0.0065 m 0
40 0.0158 m 0.0154 m 2
60 0.0112m 0.0114 m 1.8
90 0.0022 m 0.0022 m 0
120 0.0010 m 0.0010 m 0

Errors in calculating deflection in the beam center at the presented carrier
frequencies did not exceed 2 %.

Conclusion. Developed mathematical model shows a very high conver-
gence with the well-known analytical solution; the segmented beam works as a
whole. It should be noted that the Timoshenko theory was used in the mathe-
matical model for the beams’ element base, while analytical solutions were
obtained for the classical Euler — Bernoulli beam model, which also imposes
certain errors when comparing the results.

Mathematical model obtained uses the element base necessary in describing
the structure and is a rather flexible tool in describing system dynamics of any
complexity. Besides, it is able to solve the problem of simulating a multi-stage
helicopter transmission and such a problem as gear — bench system determining
the mechanism system components interaction. With sufficient level of
automation, it is possible to obtain an efficient design technique for dynamically
stable multi-stage transmission systems. Technique under development would
significantly improve the design process of helicopter transmissions and their
test benches, as the main products of JSC “Reduktor-PM”.

Experimentally verified mathematical model of this kind would make
it possible to solve the practical problem of determining the influence of the
gearbox under testing and of the test bench on the characteristics of the gear-
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bench system as a whole, as well as the mutual influence of these subsystems
on each other.

Next stage of scientific work performed by the authors would be building
a mathematical model of the operating test bench comprising helicopter gearbox
under testing and its verification with the obtained experimental data.

Translated by D.L. Alekhin
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